
CS395T: Securing real-world systems

1. Course Contact ... 2

2. Course requirements ... 2

3. Grading / Attendance ... 2

4. Class attendance .. 2

5. Paper writeups ... 2

6. Skipping attendance or paper writeups... 3

7. Paper presentations ... 3

8. Project .. 3

9. Class project midterm presentation .. 4

10. Class project final presentation ... 4

11. Class participation .. 4

12. Project ideas .. 4

13. Policy on Academic Accommodations ... 6

14. Academic Integrity ... 6

15. Artificial intelligence .. 7

16. Religious holy days ... 7

17. Class Recordings ... 7

18. Class Calendar .. 8

1. Course Contact
Dr. Shravan Narayan

Office Hours: 2:30 to 3:30 at GDC 6.430 on Tuesday and Thursday. No office hours on September 26th.

(Email to let me know you’re coming, or if you need alternate meeting times)

Email: shr@cs.utexas.edu (Expect a response within 48 hours)

Canvas: https://utexas.instructure.com/courses/1366500

(Syllabus last updated: Sept 4th, 2023)

2. Course requirements
It is expected that all students have taken CS 361s or equivalent. This is not a hard requirement, but

students without this experience are expected to look through the readings in CS361s as needed on their

own time to keep up with this course.

At a minimum, students are expected to have knowledge of programming with C, compiling C

applications, the memory layout of C applications including stack and heap, as well as standard terms

and operations from programming and compilation such as how control flow (branches, indirect function

calls) work, what a program counter does etc. While the course will introduce the concept of memory

safety, this is mainly meant as a refresher. Students should have some familiarity with this and those

unfamiliar with memory safety are expected to go through the additional material listed in this course

calendar or from UT’s CS361s course.

3. Grading / Attendance
Grade breakdown is as follows:

• Class attendance – 10%

• Paper writeups – 30%

• Paper presentations – 10%

• Class project midterm presentation and writeup – 20%

• Class project final presentation and writeup – 30%

• Bonus: class participation – 5%

Each of these are broken down below.

4. Class attendance
Attendance in this class is required. See “Skipping attendance or paper writeups” below if you need to

skip classes. Attending the last week of class is required as you will be required to present your project –

only UT excused absences will be allowed.

Note one class on September 7th is expected to be remote over zoom. The link for this will be posted on

Canvas.

5. Paper writeups
The list of papers that will be discussed in the course are listed in the calendar below. Each class, we will

discuss one (or in some cases two) research paper(s). Students are expected to read the paper prior to

mailto:shr@cs.utexas.edu
https://utexas.instructure.com/courses/1366500
https://www.cs.utexas.edu/~hovav/class/cs361s-s22/

attending class and submit paper writeups prior to each class. A paper writeup is a short summary of

each paper along with pros, cons, and discussion points. These may not be submitted late unless you

have a UT approved reason (sickness, emergency etc.). See “Skipping attendance or paper writeups”

below if you need to skip classes.

If multiple papers are listed for a given class, submit a single writeup summarizing both papers.

These writeups may be submitted on Gradescope and are due at 3:30pm on Tuesday and Thursday (If

Gradescope does not cooperate, this may change to submission in physical form during the class).

Note that some papers may be modified based on student interest/new security news etc. Papers that

are replaced will be done so with one week's notice.

6. Skipping attendance or paper writeups
This class has a total of four skips that you can use either for classes or paper writeups without any

explanation/email/note to me. These skips can be used for emergencies, sickness etc.

What does this mean?

• You didn’t do the writing assignment (in time): use up a skip (up to 2)

• You can’t show up to class: use up a skip (up to 2)

If you need to skip classes or paper writeups beyond the two + two skips, please follow standard UT

guidelines for excused absences. Suggestion: try to reserve these skips for emergencies.

7. Paper presentations
Each student will be expected to lead one or two paper discussions in class. On the 24th and 29th of

August, I will lead a discussion as an example for students. Starting the 31st of August, students will lead

discussions. Each paper will have either one or two discussion leads, depending on the size of the class. I

will lead the discussion on 14th September as this is a slightly tricky paper to fully put in context.

Signups for paper presentations will be posted to canvas.

8. Project
The goal for the course project is to first develop or build on existing security hardening techniques, next,

modify existing applications to use the security technique, and finally evaluate their impact on security

and performance. The modifications will need to be evaluated on large popular applications such as

browsers, the Linux kernel, frameworks like tensor flow etc.

The projects can be done individually or in groups of up to 3. If you are a group, you are expected to

clearly document what contributions each member of the team has made to the project.

You are welcome to develop your own project ideas in the area of systems security and discuss this with

me. Alternately, you can build on, or implement one of the existing project ideas that I will share in class.

Project selection and brainstorming will occur in class on 28 September 2023, although you are welcome

to select your project earlier as well. If you choose to develop your own project ideas, you must get my

approval before using this as your class project. You are welcome to ask me about possible projects at

any time in the course.

You are encouraged to be ambitious and try a challenging project that you think would be fun. Students

who execute an easy project well will score the same as students who pick an ambitious project but only

have partial success.

9. Class project midterm presentation
Project groups are expected to provide a two-page single-spaced writeup on the progress of their project

as well as a 10 to 15 minute presentation in class of their project on 24 October 2023 or 26 October

2023. The exact day of the presentation will be decided in class during project selection.

10. Class project final presentation
Project groups are expected to provide a three to five-page single-spaced writeup on the progress of

their project as well as a 15 minute presentation in class of their project on 28 Nov 2023 or 30 Nov 2023.

The exact day of the presentation will be decided in class during project selection.

11. Class participation
This class is powered by discussion and thus students should participate in discussions. It is thus very

important you read the papers and submit paper writeups so you can take part in the class discussions.

The discussions will either be in open free-form discussions or Q&A style discussions where each student

will be given the chance to answer questions raised by the paper discussion lead. Students who make a

point of participating in discussions are eligible for a bonus score of up to 5% of the course grade.

12. Project ideas
Here are few project ideas that you are welcome to use as this course’s project. You are also welcome to

develop your own project ideas in the area of systems security and discuss this with me. If you choose to

develop your own project ideas, you must get my approval to use your idea as this course project.

• Use RLBox to sandbox a library in a major application or framework. To sandbox the library,

configure RLBox and modify the build scripts to use a WebAssembly sandbox. Compare the

performance of this with that of a Native Client sandbox. A tutorial to use RLBox is available here

https://rlbox.dev/. Some examples of libraries you could sandbox:

o Sandboxing libjpeg in the TensorFlow framework

o Sandboxing libjpeg (or any file format parsing library) in ClamAV

o Sandboxing markdown-to-html libraries in the Apache web server or in standalone apps

Skills: Comfortable with C++. Experience using Makefiles will help but is not necessary.

 Level of difficulty: Easy/Moderate.

• Speedup Chrome’s compressed pointer heap to use memory accesses based on Intel x86

segmentation. Similar to Native Client or WebAssembly, Chrome uses a contiguous heap for

JavaScript code, as you will read about in class. Chrome accesses these contiguous memories

using the usual load/store instructions. However, prior research shows that Intel x86 allows a

more optimized way to access contiguous memories. This low-level optimization leverages

https://rlbox.dev/
https://sunny.garden/@blinkygal/110927958423301359
https://plas2022.github.io/files/pdf/SegueColorGuard.pdf

instructions that are part of Intel x86 segmentation – instructions optimized to access contiguous

memories. Modify Chrome’s access of the contiguous JavaScript heap from using standard x86

load/store instructions to instructions that can use segmentation instructions. In particular, clang

provides annotations in C/C++ that can be used to modify code to leverage segmentation

instructions. Using this, modify Chrome to implement this optimization and measure the

performance difference.

Skills: Comfortable with C++ and clang. Experience working with Chrome will help but is not

necessary.

Level of difficulty: Moderate/Hard.

• In the style of SFI, modify Firefox to ensure all memory accesses to its JavaScript heap are

masked to remain in the JavaScript heap. However, unlike traditional SFI tools, the Firefox

browser creates multiple tiny discontinuous arenas for its JavaScript heap. Thus, it is not easy to

check if a pointer being dereferenced is outside the current arena. To adjust this, modify the

arena to be aligned to its size, and store the size in the style of low-fat pointers (in the top bits of

the pointer). Then during pointer arithmetic, check that a pointer is not modified to point to a

location outside the arena.

Skills: Comfortable with C++. Experience working with Firefox will help but is not necessary.

Level of difficulty: Hard.

• Implement a version of RLBox’s tainted type in Rust. As you will read in the class, the RLBox

framework provides “tainted” types to safely handle untrusted data coming from a particular

sandbox’s heap. When using a tainted integer, RLBox allows arithmetic on the tainted integer but

does not allow the tainted integer to be used in place of a regular integer. When dereferencing a

tainted pointer, RLBox automatically checks that the pointer being dereferenced is within the

sandbox’s heap. Recreate this behavior in Rust using the following setup. Use a Rust “Vec<u8>”

to represent the sandbox heap. Then provide APIs to access this Rust Vec<u8> that return data

wrapped in a new tainted type that you create in Rust. This tainted type must ensure that the

tainted data being returned cannot accidentally be misused but continue to allow simple safe

operations like arithmetic on a tainted int.

Skills: Comfortable with Rust.

Level of difficulty: Moderate/Hard.

• Measure the cost of each of clang’s sanitizers. Clang provides a number of sanitizers to help

identify memory safety errors as well as other programming errors. These include the address

sanitizer (which we will read about in class), the undefined behavior sanitizer, memory sanitizer

etc. Execute each of these sanitizers on standard benchmarks and measure the performance.

Reproduce the experimental results from FloatZone – an optimization for sanitizers recently

developed by researchers. FloatZone makes its modified clang sanitizers available open source,

so you would need to build their modified Clang compiler and run standard benchmark suites

like SPEC.

Required experience: Comfortable using Clang and building C/C++ code.

Level of difficulty: Easy.

• Measure the cost of clang’s CFI in standard benchmarks and appliations. Clang currently provides

a few simple compiler flags to compile an application with different forms of CFI. The

configuration flags of CFI include “Forward-Edge CFI for Virtual Calls”, “Bad Cast Checking”, “Non-

Virtual Member Function Call Checking”, “Indirect Function Call Checking”, “Member Function

https://www.usenix.org/system/files/usenixsecurity23-gorter.pdf

Pointer Call Checking”. Measure the performance cost of different combinations of these CFI

checks both in terms of runtime overheads and memory overheads on both standard

benchmark suites like SPEC as well as one large application like a web browser or web server.

Required experience: Comfortable using Clang.

Level of difficulty: Easy.

• Modify wasm2c to trace all memory accesses, record it to file, and calculate the diff of two

different memory traces of a program. Wasm2c is a compiler that compiles Wasm binaries to

native code by first compiling WebAssembly files to C code, and then compiling C code with a

standard C compiler. You can modify Wasm2c to record every memory load and store operation

to the WebAssembly heap, and save this to a file. By running this modified Wasm2c to two

different executions of a program, you can identify memory accesses that differ between two

traces of a program. Such tools allow developers to identify where program executions differ for

different inputs. Build this tool that records two traces and then diffs the two traces, and identify

the memory access that differs between the two traces.

Skills: Comfortable with C++.

Level of difficulty: Easy/Moderate.

• Develop a scheme that compiler backends can follow to ensure the emitted instructions would

simply abort in the presence of a 1-bit flip in any one of instructions. Compilers today emit

assembly that when modified by Rowhammer can be used to bypass security checks. For

example, assume that we have a load instruction “lw a1, 0(a2)”. a1 and a2 are registers. This

instruction loads from the memory location a2 and stores the loaded value in register a1.

Assuming with Rowhammer, you could flip a single bit in this instruction which causes the

instruction to be parsed differently. The instruction could now become “lw a1, 0(a4)” or “lw a1,

0(a8)”. Then a simple encoding scheme that keeps this safe would be to emit “lw a1, 0(a2)” only

after setting registers a4 and a8 to zero. This is because execution of “lw a1, 0(a4)” or “lw a1,

0(a8)” would fault as it in-effect dereferences a null pointer. You can modify the tiny C compiler

to use this new encoding scheme. This project can target the RISC-V or ARM instruction

encoding.

Skills: Comfortable with RISC-V or ARM. Familiarity with the tiny C compiler would help as well.

Level of difficulty: Moderate/Hard.

13. Policy on Academic Accommodations
The university is committed to creating an accessible and inclusive learning environment consistent with

university policy and federal and state law. Please let me know if you experience any barriers to learning

so I can work with you to ensure you have equal opportunity to participate fully in this course. If you are

a student with a disability, or think you may have a disability, and need accommodation please contact

Disability and Access (D&A). Please refer to D&A’s website for contact and more information:

http://diversity.utexas.edu/disability/. If you are already registered with D&A , please deliver your

Accommodation Letter to me as early as possible in the semester so we can discuss your approved

accommodation and needs in this course.

14. Academic Integrity
Recall the Student Honor Code: “As a student of The University of Texas at Austin, I shall abide by the

core values of the University and uphold academic integrity.”

http://diversity.utexas.edu/disability/

Students who violate University rules on academic dishonesty are subject to disciplinary penalties,

including the possibility of failure in the course and/or dismissal from the University. Since such

dishonesty harms the individual, all students, and the integrity of the University, policies on academic

dishonesty will be strictly enforced. For further information, please visit the Student Conduct and

Academic Integrity Website.

To detect instances of academic integrity violations in programming assignments we may use 3rd party

software.

15. Artificial intelligence

The use of artificial intelligence tools (such as ChatGPT) in this class is strictly prohibited. This includes

using AI to generate ideas, outline an approach, answer questions, solve problems, or create original

language. All work in this course must be your own or created in group work, where allowed.

16. Religious holy days

Religion (or lack thereof) is an important part of who we are. If a holy day observed by your religion falls

during the semester and you require accommodations due to that, please let me know as soon as

possible. Email is an acceptable form of communication. In order to guarantee accommodation around

presentations or other big deadlines, I will need notice of at least two weeks. If you are unable (or

forget!) to provide that notice, please contact me anyway in case I can still accommodate you.

University-required language: A student who is absent from an examination or cannot meet an

assignment deadline due to the observance of a religious holy day may take the exam on an alternate

day or submit the assignment up to 24 hours late without penalty, ONLY if proper notice of the planned

absence has been given. Notice must be given at least 14 days prior to the classes which will be missed.

For religious holy days that fall within the first two weeks of the semester, notice should be given on the

first day of the semester. Notice must be personally delivered to the instructor and signed and dated by

the instructor, or sent certified mail. Email notification will be accepted if received, but a student

submitting email notification must receive email confirmation from the instructor.

17. Class Recordings

Classes may be recorded. Class recordings, if provided, are reserved only for students in this class for

educational purposes and are protected under FERPA. The recordings should not be shared outside the

class in any form. Violation of this restriction by a student could lead to Student Misconduct

proceedings.

https://deanofstudents.utexas.edu/conduct/
https://deanofstudents.utexas.edu/conduct/

18. Class Calendar

Date Theme Class contents

Tuesday, 22 Aug 2023 Introduction Welcome, introduction.

How to read a paper S. Keshav (2007)

Time permitting: Paper discussion assignment

Thursday, 24 Aug 2023

Instructions: no paper writeup for this week

Quick recap from CS380s: How Memory Safety
Violations Enable Exploitation of Programs - M.
Payer (2018)

Paper discussion assignment

Optional reading: if you don’t have an
undergrad security background, read these as
well.
Smashing the Stack for Fun and Profit - Aleph
One (1996)
Beyond stack smashing: Recent advances in
exploiting buffer overruns - J Pincus, B Baker
(2004)
For discussion of use-after-frees, see Section 2
of FreeSentry: Protecting Against Use-After-Free
Vulnerabilities Due to Dangling Pointers - Yves
Younan (2015)
Return-Oriented Programming: Systems,
Languages, and Applications - R. Roemer, E.
Buchanan, H. Shacham and S. Savage (2012)
The Confused Deputy attack - Norm Hardy
Sok: Eternal war in memory - Laszlo Szekeres,
Mathias Payer, Tao Wei, Dawn Song (2013)

Tuesday, 29 Aug 2023 Privilege separation Instructions: Attendance + paper writeup
submission starts with this paper. Writeup on
canvas before the class

Preventing Privilege Escalation - N Provos, M
Friedl, P Honeyman (2003)

Thursday, 31 Aug 2023

Site isolation: Process separation for web sites
within the browser - C Reis, A Moshchuk, N
Oskov (2019)

Tuesday, 5 Sep 2023 Memory Safety SoftBound: Highly compatible and complete
spatial memory safety for C - Santosh

http://svr-sk818-web.cl.cam.ac.uk/keshav/papers/07/paper-reading.pdf
https://www.morganclaypoolpublishers.com/catalog_Orig/samples/9781970001815_sample.pdf#page=16
https://www.morganclaypoolpublishers.com/catalog_Orig/samples/9781970001815_sample.pdf#page=16
https://avicoder.me/2016/02/01/smashsatck-revived/
https://ieeexplore.ieee.org/iel5/9141/29316/01324594.pdf
https://ieeexplore.ieee.org/iel5/9141/29316/01324594.pdf
http://www.fort-knox.org/files/freesentry.pdf
http://www.fort-knox.org/files/freesentry.pdf
https://www.cs.utexas.edu/~hovav/dist/rop.pdf
https://www.cs.utexas.edu/~hovav/dist/rop.pdf
https://cseweb.ucsd.edu/~dstefan/cse291-fall16/papers/confused-deputy.pdf
https://ieeexplore.ieee.org/iel7/6547086/6547088/06547101.pdf?casa_token=Dv0wjxqzrC8AAAAA:rh4Op41cidoPIPIIICo08Yfzdh0NidcuCYBAKB4dwr1RcAQVOFMPWDZoV-_H_UMJ7EGjjH8LC70
http://nielsinexile.xtdnet.nl/papers/privsep.pdf
https://www.usenix.org/system/files/sec19-reis.pdf
https://www.usenix.org/system/files/sec19-reis.pdf
http://www.cs.tufts.edu/comp/150BUGS/softbound-2009.pdf
http://www.cs.tufts.edu/comp/150BUGS/softbound-2009.pdf

Nagarakatte, Jianzhou Zhao, Milo M. K. Martin,
Steve Zdancewic (2009)

Thursday, 7 Sep 2023 (Class will be
remote. Zoom link
on canvas.)

Instructions: Class will be remote. Zoom link on
canvas.

Heap Bounds Protection with Low Fat Pointers -
Gregory J. Duck, Roland H. C. Yap (2016)

Extra resources (Optional)
Low-Fat Pointers: Compact Encoding and
Efficient Gate-Level Implementation of Fat
Pointers for Spatial Safety and Capability-based
Security - Albert Kwon, Udit Dhawan, Jonathan
M. Smith, Thomas F. Knight, Andre DeHon
(2013)

Tuesday, 12 Sep 2023 SFI Native client: A sandbox for portable, untrusted
x86 native code - Bennet Yee, David Sehr,
Gregory Dardyk, J. Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and
Nicholas Fullagar (2009)

Thursday, 14 Sep 2023

Bringing the web up to speed with
WebAssembly - Andreas Haas, Andreas
Rossberg, Derek L. Schuff, Ben L. Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai,
JF Bastien (2017)

Instructions: Skip Sections 3 and 4. Paper
discussion will be led by instructor.

Tuesday, 19 Sep 2023 Securing applications RLBox: Retrofitting Fine Grain Isolation in the
Firefox Renderer - Shravan Narayan, Craig
Disselkoen, Tal Garfinkel, Nathan Froyd, Eric
Rahm, Sorin Lerner, Hovav Shacham, Deian
Stefan (2020)

Thursday, 21 Sep 2023

Google Chrome V8 Protections mechanisms
V8 pointer compression (Skip sections on
“Remaining gap” and “Some implementation
details”)
V8 Ubercage
V8 MiraclePointer - Samuel Groß et. al, Google
(2021)

Optional reading
V8 Pointer Compression 2

Note: more V8 security features to be covered
on 10 Oct (This is a reading for a future class)
V8 CFI - Google (2021) to be covered on 10 Oct

https://www.comp.nus.edu.sg/~ryap/Projects/LowFat/cc16lowfatptrs.pdf
https://dl.acm.org/doi/pdf/10.1145/2508859.2516713
https://dl.acm.org/doi/pdf/10.1145/2508859.2516713
https://dl.acm.org/doi/pdf/10.1145/2508859.2516713
https://dl.acm.org/doi/pdf/10.1145/2508859.2516713
https://research.google/pubs/pub34913.pdf
https://research.google/pubs/pub34913.pdf
https://dl.acm.org/doi/pdf/10.1145/3062341.3062363?theme=2019
https://dl.acm.org/doi/pdf/10.1145/3062341.3062363?theme=2019
https://arxiv.org/abs/2003.00572
https://arxiv.org/abs/2003.00572
https://v8.dev/blog/pointer-compression
https://docs.google.com/document/d/1FM4fQmIhEqPG8uGp5o9A-mnPB5BOeScZYpkHjo0KKA8/edit#heading=h.xzptrog8pyxf
https://security.googleblog.com/2022/09/use-after-freedom-miracleptr.html
https://v8.dev/blog/oilpan-pointer-compression
https://docs.google.com/document/d/1O2jwK4dxI3nRcOJuPYkonhTkNQfbmwdvxQMyXgeaRHo/edit#heading=h.bvaojj9fu6hc

Tuesday, 26 Sep 2023 Potpourri AddressSanitizer: A Fast Address Sanity Checker
- Konstantin Serebryany, Derek Bruening,
Alexander Potapenko, Dmitry Vyukov (2012)

Thursday, 28 Sep 2023

Short paper: Segue & ColorGuard: Optimizing

SFI Performance and Scalability on Modern x86 -

Shravan Narayan, Tal Garfinkel, Evan Johnson,

David Thien, Joey Rudek, Michael LeMay, Anjo

Vahldiek-Oberwagner, Dean Tullsen, Deian

Stefan (2022)

Instructions: Shorter paper today, so we can
spend time brainstorming project ideas and
forming project groups.

Tuesday, 3 Oct 2023 Kernel / kernel-
powered security

KSplit: Automating Device Driver Isolation -
Yongzhe Huang, Vikram Narayanan, David
Detweiler, Kaiming Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev (2022)

Thursday, 5 Oct 2023

Dune: Safe User-level Access to Privileged CPU
Features - Adam Belay, Andrea Bittau, Ali
Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis (2012)

Tuesday, 10 Oct 2023 Challenges of
security hardening
(CFI)

Control-Flow Integrity: Principles,

Implementations, and Applications M. Abadi, M.

Budiu, Úlfar Erlingsson, and J. Ligatti (2009)

V8 CFI - Google (2021) (Covered by discussion
lead from Sept 21)

Thursday, 12 Oct 2023

Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity - Nicolas Carlini, Antonio
Barresi, Mathias Payer, David Wagner, Thomas
R. Gross (2015)

Tuesday, 17 Oct 2023 Challenges of
security hardening
(MPK)

Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries - Mohammad
Hedayati, Spyridoula Gravani, Ethan Johnson,
John Criswell, Michael L. Scott, Kai Shen and
Mike Marty (2019)

Thursday, 19 Oct 2023

{PKU} Pitfalls: Attacks on {PKU-based} Memory
Isolation Systems - R. Joseph Connor, Tyler
McDaniel, Jared M. Smith, and Max Schuchard
(2020)

Tuesday, 24 Oct 2023

Midpoint presentation for projects, part 1

Thursday, 26 Oct 2023

Midpoint presentation for projects, part 2

Tuesday, 31 Oct 2023 Spectre attacks Spectre attacks: Exploiting speculative execution
- Paul Kocher, Jann Horn, Anders Fogh, Daniel
Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, Yuval Yarom (2018)

https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://plas2022.github.io/files/pdf/SegueColorGuard.pdf
https://plas2022.github.io/files/pdf/SegueColorGuard.pdf
https://www.cse.psu.edu/~gxt29/papers/ksplit_osdi22.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.cse.usf.edu/~ligatti/papers/cfi-tissec.pdf
https://www.cse.usf.edu/~ligatti/papers/cfi-tissec.pdf
https://docs.google.com/document/d/1O2jwK4dxI3nRcOJuPYkonhTkNQfbmwdvxQMyXgeaRHo/edit#heading=h.bvaojj9fu6hc
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf
https://www.usenix.org/system/files/atc19-hedayati-hodor.pdf
https://www.usenix.org/system/files/atc19-hedayati-hodor.pdf
https://www.usenix.org/system/files/sec20-connor.pdf
https://www.usenix.org/system/files/sec20-connor.pdf
https://spectreattack.com/spectre.pdf

Thursday, 2 Nov 2023

A Systematic Evaluation of Transient Execution
Attacks and Defenses - Claudio Canella, Jo Van
Bulck, Michael Schwarz, Moritz Lipp, Benjamin
von Berg, Philipp Ortner, Frank Piessens, Dmitry
Evtyushkin, Daniel Gruss (2019)

Tuesday, 7 Nov 2023 Spectre-aware
defenses

Swivel: Hardening WebAssembly against Spectre
- Shravan Narayan, Craig Disselkoen, Daniel
Moghimi, Sunjay Cauligi, Evan Johnson, Zhao
Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita,
Hovav Shacham, Dean Tullsen, Deian Stefan
(2021)

Thursday, 9 Nov 2023

Going Beyond the Limits of SFI: Flexible and
Secure Hardware-Assisted In-Process Isolation
with HFI - Shravan Narayan, Tal Garfinkel,
Mohammadkazem Taram, Joey Rudek, Daniel
Moghimi, Evan Johnson, Chris Fallin, Anjo
Vahldiek-Oberwagner, Michael LeMay, Ravi
Sahita, Dean Tullsen, Deian Stefan (2023)

Tuesday, 14 Nov 2023 Potpourri 2 Towards a verified range analysis for JavaScript
JITs - Fraser Brown, John Renner, Andres Nötzli,
Sorin Lerner, Hovav Shacham, Deian Stefan
(2020)

Thursday, 16 Nov 2023

Beyond the PDP-11: Architectural support for a
memory-safe C abstract machine - David
Chisnall, Colin Rothwell, Robert N. M. Watson,
Jonathan Woodruff, Munraj Vadera, Simon W.
Moore, Michael Roe, Brooks Davis, Peter G.
Neumann (2015)

Tuesday, 21 Nov 2023

Thanksgiving break, no class

Thursday, 23 Nov 2023

Thanksgiving break, no class

Tuesday, 28 Nov 2023 Project presentation Final presentation for projects, part 1

Thursday, 30 Nov 2023

Final presentation for projects, part 2

Possible extra papers

1. Some thoughts on security after ten years of qmail 1.0 - Daniel J. Bernstein (2007)

2. Everything Old is New Again: Binary Security of WebAssembly - Daniel Lehmann, Johannes

Kinder, Michael Pradel (2020)

3. Towards a verified range analysis for JavaScript JITs - Fraser Brown, John Renner, Andres Nötzli,

Sorin Lerner, Hovav Shacham, Deian Stefan (2020)

4. Summary: MTE As Implemented (+ all three subparts linked) - Mark Brand, Project Zero (2023)

5. Language-independent sandboxing of just-in-time compilation and self-modifying code - J Ansel,

P Marchenko, U Erlingsson, E Taylor, B Chen, DL Schuff, D Sehr, CL Biffle, B Yee (2011)

6. Language support for fast and reliable message-based communication in Singularity OS

7. Overshadow: a virtualization-based approach to retrofitting protection in commodity operating

systems

https://www.usenix.org/system/files/sec19-canella.pdf
https://www.usenix.org/system/files/sec19-canella.pdf
https://www.usenix.org/system/files/sec21-narayan.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf
https://www.cs.utexas.edu/~hovav/dist/vera.pdf
https://www.cs.utexas.edu/~hovav/dist/vera.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201503-asplos2015-cheri-cmachine.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201503-asplos2015-cheri-cmachine.pdf
http://css.csail.mit.edu/6.858/2015/readings/qmail.pdf
https://www.usenix.org/system/files/sec20-lehmann.pdf
https://par.nsf.gov/servlets/purl/10168655
https://googleprojectzero.blogspot.com/2023/08/summary-mte-as-implemented.html
https://research.google/pubs/pub37204.pdf
https://read.seas.harvard.edu/~kohler/class/aosref/fahndrich06language.pdf
https://www.cs.utexas.edu/users/shmat/courses/cs380s_fall11/overshadow.pdf
https://www.cs.utexas.edu/users/shmat/courses/cs380s_fall11/overshadow.pdf

	1. Course Contact
	2. Course requirements
	3. Grading / Attendance
	4. Class attendance
	5. Paper writeups
	6. Skipping attendance or paper writeups
	7. Paper presentations
	8. Project
	9. Class project midterm presentation
	10. Class project final presentation
	11. Class participation
	12. Project ideas
	13. Policy on Academic Accommodations
	14. Academic Integrity
	15. Artificial intelligence
	16. Religious holy days
	17. Class Recordings
	18. Class Calendar

