
CS380S: Graduate Computer Security

1. Course Contact ... 2

2. Course requirements .. 2

3. Grading / Attendance ... 2

4. Class attendance ... 2

5. Paper writeups ... 3

6. Skipping attendance or paper writeups ... 3

7. Paper presentations ... 3

8. Project .. 3

9. Class project midterm writeup ... 4

10. Class project final writeup and presentation ... 4

11. Class participation .. 4

12. Project ideas ... 4

13. Policy on Academic Accommodations ... 7

14. Academic Integrity ... 7

15. Artificial intelligence .. 7

16. Religious holy days ... 7

17. Class Recordings ... 8

18. Class Calendar .. 8

1. Course Contact
Dr. Shravan Narayan

Classes: 2:00pm to 3:30pm at GDC 2.210 on Tuesday and Thursday.

Office Hours: At GDC 6.430, 3:30pm to 4:30pm on Tuesday and 4:00pm to 4:45pm on Wednesday.

(Email to let me know you’re coming, or if you need alternate meeting times)

Email: shr@cs.utexas.edu (Expect a response within 48 hours)

TA/Grader: Aashish Gottipati agottipati@utexas.edu

Canvas: https://utexas.instructure.com/courses/1402120

(Syllabus last updated: Nov 7th, 2024)

2. Course requirements
It is expected that all students have taken CS 361s or equivalent. This is not a hard requirement, but

students without this experience are expected to look through the readings in CS361s as needed on their

own time to keep up with this course.

At a minimum, students are expected to have knowledge of programming with C, compiling C

applications, the memory layout of C applications including stack and heap, as well as standard terms

and operations from programming and compilation such as how control flow (branches, indirect function

calls) work, what a program counter does etc. While the course will introduce the concept of memory

safety, this is mainly meant as a refresher. Students should have some familiarity with this and those

unfamiliar with memory safety are expected to go through the additional material listed in this course

calendar or from UT’s CS361s course.

3. Grading / Attendance
Grade breakdown is as follows:

• Class attendance – 10% (twice a week)

• Paper writeups – 20% (twice a week)

• Paper presentations – 20% (once or twice a semester)

• Class project midterm writeup – 15% (once on Oct 28th)

• Class project final presentation – 15% (once on Dec 3rd or Dec 5th)

• Class project final writeup – 20% (once on Dec 6th)

• Bonus: class participation – 5% (throughout the semester)

Each of these are broken down below.

4. Class attendance
Attendance in this class is required starting week 2 (Sept 3rd). See “Skipping attendance or paper

writeups” below if you need to skip classes. Attending the last week of class is required as you will be

required to present your project – only UT excused absences will be accommodated.

mailto:shr@cs.utexas.edu
mailto:agottipati@utexas.edu
mailto:agottipati@utexas.edu
https://utexas.instructure.com/courses/1366500
https://www.cs.utexas.edu/~hovav/class/cs361s-s24/

5. Paper writeups
The list of papers that will be discussed in the course are listed in the calendar below. Starting week 2

(Sept 3rd), we will discuss one or two research papers each class. Students are expected to read the

papers prior to attending class and submit paper writeups prior to each class. A paper writeup is a short

summary of each paper along with pros, cons, discussion points, and specific questions about the paper.

These may not be submitted late unless you have a UT approved reason (sickness, emergency etc.). See

“Skipping attendance or paper writeups” below if you need to skip classes.

These writeups may be submitted on Gradescope and are due at 2pm on Tuesday and Thursday (If

Gradescope does not cooperate, this may change to submission in physical form during the class).

Note that some papers may be modified based on student interest/new security news etc. Papers that

are replaced will be done so with one week's notice.

6. Skipping attendance or paper writeups
This class has a total of 4 skips for paper writeups and 2 skips for class attendance that you can use

without any explanation/email/note to me. These are for any situations that may come up that is not

recognized as a UT-approved reason for skipping class/assignments.

Note that each paper skip only counts for one paper, not for all papers in a class. If you want to skip both

papers in a class this counts as two paper skips.

If you need to skip classes or paper writeups beyond the 4 paper skips + 2 class skips, please follow

standard UT guidelines for excused absences.

Suggestion: try to reserve these skips for emergencies.

7. Paper presentations
Each student is expected to present one paper (with powerpoint or other suitable presentation aides)

starting Sept 3rd. The presentation is expected to be 30 mins with of content with 10 mins of Q&A during

or after the presentation. Presenters should be well versed in both the paper as well as background

material. Bonus points for including some background material in the presentation.

Signups for paper presentations here.

Possible modifications: We may modify paper presentations to have two presenters working as a team,

depending on the size of the class. We may also require students to present up to papers in the class.

8. Project
The goal for the course project is to first develop or build on existing security hardening techniques, next,

modify existing applications to use the security technique, and finally evaluate their impact on security

and performance. The modifications will need to be evaluated on large popular applications such as

browsers, the Linux kernel, frameworks like tensor flow etc.

The projects can be done individually or in groups of up to 3. If you are a group, you are expected to

clearly document what contributions each member of the team has made to the project.

https://docs.google.com/document/d/1IEFJK8JSbfdr1cCWNfMdJTm9IR-zb70iRFpHHVPQ960/edit?usp=sharing

You are welcome to develop your own project ideas in the area of systems security and discuss this with

me. Alternately, you can build on, or implement one of the existing project ideas that I will share in class.

Project group and topics selection should be complete by 25th September 2024, although you are

welcome to select your project earlier as well. If you choose to develop your own project ideas, you must

get my approval before using this as your class project. You are welcome to ask me about possible

projects at any time in the course.

You are encouraged to be ambitious and try a challenging project that you think would be fun. Students

who execute an easy project well will score the same as students who pick an ambitious project but only

have partial success.

9. Class project midterm writeup
Project groups are expected to provide a two-page single-spaced writeup on the progress of their project

on 28th October 2024 via Canvas.

10. Class project final writeup and presentation
Project groups are expected to provide a five-page single-spaced writeup on their project on 6th

December via Canvas as well as a 15 minute presentation in class of their project on 3rd December and

5th December. The exact day of the presentation will be decided in class during project selection.

11. Class participation
This class is powered by discussion and thus students should participate in discussions. It is thus very

important you read the papers and submit paper writeups so you can take part in the class discussions.

The discussions and Q&A will be directed to the presenter of the paper. Students who make a point of

participating in discussions are eligible for a bonus score of up to 5% of the course grade.

12. Project ideas
Here are a few project ideas that you are welcome to use as this course’s project. You are also welcome

to develop your own project ideas in the area of systems security and discuss this with me. If you choose

to develop your own project ideas, you must get my approval to use your idea as this course project.

• Use RLBox to sandbox a library in a major application or framework. To sandbox the library,

configure RLBox and modify the build scripts to use a WebAssembly sandbox. Compare the

performance of this with that of a Native Client sandbox. A tutorial to use RLBox is available here

https://rlbox.dev/. Some examples of libraries you could sandbox:

o Sandboxing libjpeg in the TensorFlow framework

o Sandboxing libjpeg (or any file format parsing library) in ClamAV

o Sandboxing markdown-to-html libraries in the Apache web server or in standalone apps

Pre-reading: RLBox: Retrofitting Fine Grain Isolation in the Firefox Renderer

Skills: Comfortable with C++. Experience using Makefiles will help but is not necessary.

Level of difficulty: Easy/Moderate.

https://rlbox.dev/
https://sunny.garden/@blinkygal/110927958423301359
https://arxiv.org/abs/2003.00572

• Speedup Chrome’s compressed pointer heap to use memory accesses based on Intel x86

segmentation. Similar to Native Client or WebAssembly, Chrome uses a contiguous heap for

JavaScript code, as you will read about in class. Chrome accesses these contiguous memories

using the usual load/store instructions. However, prior research shows that Intel x86 allows a

more optimized way to access contiguous memories. This low-level optimization leverages

instructions that are part of Intel x86 segmentation – instructions optimized to access contiguous

memories. Modify Chrome’s access of the contiguous JavaScript heap from using standard x86

load/store instructions to instructions that can use segmentation instructions. This requires two

changes --- changes in Chrome’s C++ code and changes in Chrome’s JITtedcode. For Chrome’s

C++ code, clang provides annotations in C/C++ that can be used to modify code to leverage

segmentation instructions. For Chrome’s JIT code, you can modify Chrome’s JIT compiler directly

to use segmentation instructions. Modify Chrome to implement this optimization and measure

the performance difference.

Pre-reading: Segue & ColorGuard: Optimizing SFI Performance and Scalability on Modern x86

Skills: Comfortable with C++ and clang. Experience working with Chrome will help but is not

necessary.

Level of difficulty: Moderate/Hard.

• Implement a version of RLBox’s tainted type in Rust. As you will read in the class, the RLBox

framework provides “tainted” types to safely handle untrusted data coming from a particular

sandbox’s heap. When using a tainted integer, RLBox allows arithmetic on the tainted integer but

does not allow the tainted integer to be used in place of a regular integer. When dereferencing a

tainted pointer, RLBox automatically checks that the pointer being dereferenced is within the

sandbox’s heap. Recreate this behavior in Rust using the following setup. Use a Rust “Vec<u8>”

to represent the sandbox heap. Then provide APIs to access this Rust Vec<u8> that return data

wrapped in a new tainted type that you create in Rust. This tainted type must ensure that the

tainted data being returned cannot accidentally be misused but continue to allow simple safe

operations like arithmetic on a tainted int.

Pre-reading: RLBox: Retrofitting Fine Grain Isolation in the Firefox Renderer

Skills: Comfortable with Rust.

Level of difficulty: Moderate/Hard.

• Modify wasm2c to trace all memory accesses, record it to file, and calculate the diff of two

different memory traces of a program. Wasm2c is a compiler that compiles Wasm binaries to

native code by first compiling WebAssembly files to C code, and then compiling C code with a

standard C compiler. You can modify Wasm2c to record every memory load and store operation

to the WebAssembly heap, and save this to a file. By running this modified Wasm2c to two

different executions of a program, you can identify memory accesses that differ between two

traces of a program. Such tools allow developers to identify where program executions differ for

different inputs. Build this tool that records two traces and then diffs the two traces, and identify

the memory access that differs between the two traces.

Skills: Comfortable with C++.

Level of difficulty: Easy/Moderate.

• Develop a scheme that compiler backends can follow to ensure the emitted instructions would

simply abort in the presence of a 1-bit flip in any one of instructions. Compilers today emit

assembly that when modified by Rowhammer can be used to bypass security checks. For

https://plas2022.github.io/files/pdf/SegueColorGuard.pdf
https://plas2022.github.io/files/pdf/SegueColorGuard.pdf
https://arxiv.org/abs/2003.00572

example, assume that we have a load instruction “lw a1, 0(a2)”. a1 and a2 are registers. This

instruction loads from the memory location a2 and stores the loaded value in register a1.

Assuming with Rowhammer, you could flip a single bit in this instruction which causes the

instruction to be parsed differently. The instruction could now become “lw a1, 0(a4)” or “lw a1,

0(a8)”. Then a simple encoding scheme that keeps this safe would be to emit “lw a1, 0(a2)” only

after setting registers a4 and a8 to zero. This is because execution of “lw a1, 0(a4)” or “lw a1,

0(a8)” would fault as it in-effect dereferences a null pointer. You can modify the tiny C compiler

to use this new encoding scheme. This project can target the RISC-V or ARM instruction

encoding.

Pre-reading: Exploiting the DRAM rowhammer bug to gain kernel privileges

Skills: Comfortable with RISC-V or ARM. Familiarity with the tiny C compiler would help as well.

Level of difficulty: Moderate/Hard.

• Implement HFI in QEMU. HFI is an instruction set extension designed for CPUs so they can allow

applications to isolate components. The implementation can be in x86, ARM or RISC-V.

Pre-reading: Going Beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process

Isolation with HFI

Skills: Comfortable with the chosen CPU architecture. Familiarity with QEMU would help as

well.

Level of difficulty: Easy.

• Sandboxing runtimes isolate components of an application to a subset of the address space by

applying bounds checks on all memory accesses. Construct a sandboxing runtime that isolates

the components of an application by modifying the page tables entries of an application

dynamically. Concretely, these page table modifications will ensure that a component is isolated

by restricting all page entries to only point to a fixed range of the virtual address space. For

example, component 1 may be restricted to the space 8GB to 16GB while component 2 is

restricted from 16GB to 32GB etc. Modifying the page entries of an application can be

performed using libraries like PTEditor. One subtle point to note here is that for correct

functionality, you must ensure each component has its own allocator and each allocator only

allocates memory within the permitted space. You can do this either by using a custom allocator

that you modify like dlmalloc, or you can do this by building on an existing sandboxing tool which

already provides a runtime for this --- for instance wasm2c or LFI. If you do build on an existing

runtime, you can disable any bounds checks these tools add.

Pre-reading: Lightweight Fault Isolation: Practical, Efficient, and Secure Software Sandboxing

Skills: Comfortable with C/C++ and the linux kernel. Familiarity with sandboxing will also help.

Level of difficulty: Moderate

• Reproduce the results of Arabica, a tool that isolates native libraries accessed by Java programs

through the JNI interface.

Pre-reading: Arabica: JVM-Portable Sandboxing of Java’s Native Libraries

Skills: Comfortable with Java and C++. Familiarity with JVM implementation would also help

Level of difficulty: Moderate/Hard

• RLBox is a sandboxing framework that allows applications to sandbox libraries with

WebAssembly (wasm) which isolates the effects of the library from the application. Modify the

RLBox sandboxing framework to concurrently execute each function call in a separate process as

well. You can then use this mechanism to figure out if sandboxing with Wasm is faster or slower

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf
https://github.com/misc0110/PTEditor
https://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/WebAssembly/wabt
https://dl.acm.org/doi/pdf/10.1145/3620665.3640408
https://dl.acm.org/doi/pdf/10.1145/3620665.3640408
https://www.researchgate.net/profile/Gang-Tan/publication/267685424_JVM-Portable_Sandboxing_of_Java's_Native_Libraries/links/54ea51590cf25ba91c82e8bb/JVM-Portable-Sandboxing-of-Javas-Native-Libraries.pdf
https://www.researchgate.net/profile/Gang-Tan/publication/267685424_JVM-Portable_Sandboxing_of_Java's_Native_Libraries/links/54ea51590cf25ba91c82e8bb/JVM-Portable-Sandboxing-of-Javas-Native-Libraries.pdf

than sandboxing with processes for each function call to the sandboxed library. Modify RLBox to

dynamically choose between the two options depending on which approach is faster for each

function call. Compare the performance to stock RLBox.

Pre-reading: RLBox: Retrofitting Fine Grain Isolation in the Firefox Renderer

Skills: Comfortable with C++.

Level of difficulty: Easy/Moderate

If you’re still having difficulties picking a project, please talk to the instructor to brainstorm.

13. Policy on Academic Accommodations
The university is committed to creating an accessible and inclusive learning environment consistent with

university policy and federal and state law. Please let me know if you experience any barriers to learning

so I can work with you to ensure you have equal opportunity to participate fully in this course. If you are

a student with a disability, or think you may have a disability, and need accommodation please contact

Disability and Access (D&A). Please refer to D&A’s website for contact and more information:

http://diversity.utexas.edu/disability/. If you are already registered with D&A , please deliver your

Accommodation Letter to me as early as possible in the semester so we can discuss your approved

accommodation and needs in this course.

14. Academic Integrity
Recall the Student Honor Code: “As a student of The University of Texas at Austin, I shall abide by the

core values of the University and uphold academic integrity.”

Students who violate University rules on academic dishonesty are subject to disciplinary penalties,

including the possibility of failure in the course and/or dismissal from the University. Since such

dishonesty harms the individual, all students, and the integrity of the University, policies on academic

dishonesty will be strictly enforced. For further information, please visit the Student Conduct and

Academic Integrity Website.

To detect instances of academic integrity violations in programming assignments we may use 3rd party

software.

15. Artificial intelligence
The use of artificial intelligence tools (such as ChatGPT) in this class is strictly prohibited. This includes

using AI to generate ideas, outline an approach, answer questions, solve problems, or create original

language. All work in this course must be your own or created in group work, where allowed.

16. Religious holy days
Religion (or lack thereof) is an important part of who we are. If a holy day observed by your religion falls

during the semester and you require accommodations due to that, please let me know as soon as

possible. Email is an acceptable form of communication. In order to guarantee accommodation around

https://arxiv.org/abs/2003.00572
http://diversity.utexas.edu/disability/
https://deanofstudents.utexas.edu/conduct/
https://deanofstudents.utexas.edu/conduct/

presentations or other big deadlines, I will need notice of at least two weeks. If you are unable (or

forget!) to provide that notice, please contact me anyway in case I can still accommodate you.

University-required language: A student who is absent from an examination or cannot meet an

assignment deadline due to the observance of a religious holy day may take the exam on an alternate

day or submit the assignment up to 24 hours late without penalty, ONLY if proper notice of the planned

absence has been given. Notice must be given at least 14 days prior to the classes which will be missed.

For religious holy days that fall within the first two weeks of the semester, notice should be given on the

first day of the semester. Notice must be personally delivered to the instructor and signed and dated by

the instructor, or sent certified mail. Email notification will be accepted if received, but a student

submitting email notification must receive email confirmation from the instructor.

17. Class Recordings
While there are no plans to record this class, this may change, and classes may be recorded. Class

recordings, if provided, are reserved only for students in this class for educational purposes and are

protected under FERPA. The recordings should not be shared outside the class in any form. Violation of

this restriction by a student could lead to Student Misconduct proceedings.

18. Class Calendar

Date Theme Class contents Presenters

Tuesday,
27 Aug
2024

Introduction Introduction, syllabus etc.

How to read a paper S. Keshav (2007)

Paper discussion assignments

Time permitting: Discuss material from next class

Instructor

Thursday,
29 Aug
2024

Background Instructions: Background catchup. No paper writeup for
this week

Memory safety:
- Chapter 1 from How Memory Safety Violations Enable

Exploitation of Programs - M. Payer (2018)
- Sections 30.1 and 30.2 Low-Level Software Security by

Example - Úlfar Erlingsson, Yves Younan, and Frank
Piessens (2010)

Side-channels: Sections 1 to 4 from
Transient-Execution Attacks: A Computer Architect
Perspective – Luís Fiolhais, Leonel Sousa (2023)

Instructor

http://svr-sk818-web.cl.cam.ac.uk/keshav/papers/07/paper-reading.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/payer:how.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/payer:how.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring22/papers/erlingsson:low.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring22/papers/erlingsson:low.pdf
https://dl.acm.org/doi/pdf/10.1145/3603619
https://dl.acm.org/doi/pdf/10.1145/3603619

On giving talks: (An Opinionated Talk) On Preparing Good
Talks – Ranjit Jhala (2018)

Tuesday,
3 Sep
2024

Side-channel
attacks &
defenses

Instructions: paper writeups start this week and must be
submitted on Canvas

For the below paper. Skip section 4.2 to 4.8
Paper 1: A Systematic Evaluation of Transient Execution
Attacks and Defenses - Claudio Canella, Jo Van Bulck,
Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp
Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss
(2019)

AND

Paper 2: Hertzbleed: Turning Power Side-Channel Attacks
Into Remote Timing Attacks on x86 - Yingchen Wang,
Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W. Fletcher, David Kohlbrenner (2022)

Paper 1:
<fill in>

Paper 2:
<fill in>

Thursday,
5 Sep
2024

 Paper 1: Opening Pandora’s Box: A Systematic Study of
New Ways Microarchitecture Can Leak Private Data - Jose
Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka
Nayak, Caroline Trippel, Adam Morrison, David
Kohlbrenner, Christopher W. Fletcher (2021)

Paper 1:
<fill in>

Tuesday,
10 Sep
2024

 Paper 1: Trusted browsers for uncertain times - David
Kohlbrenner, Hovav Shacham (2016)

AND

Paper 2: Dynamic Process Isolation - Martin Schwarzl,
Pietro Borrello, Andreas Kogler, Kenton Varda, Thomas
Schuster, Daniel Gruss, Michael Schwarz (2021)

Paper 1:
<fill in>

Paper 2:
<fill in>

Thursday,
12 Sep
2024

 Paper 1: Ileakage: Browser-based timerless speculative
execution attacks on apple devices - J Kim, S van Schaik, D
Genkin, Y Yarom (2023)

AND

Paper 2: GoFetch: Breaking constant-time cryptographic
implementations using data memory-dependent
prefetchers - Boru Chen, Yingchen Wang, Pradyumna
Shome, Christopher W Fletcher, David Kohlbrenner,
Riccardo Paccagnella, Daniel Genkin (2024)

Instructor
or guest
lecture.

https://www.youtube.com/watch?v=ZLXtAJPk5r0
https://www.youtube.com/watch?v=ZLXtAJPk5r0
https://www.usenix.org/system/files/sec19-canella.pdf
https://www.usenix.org/system/files/sec19-canella.pdf
https://www.usenix.org/system/files/sec22-wang-yingchen.pdf
https://www.usenix.org/system/files/sec22-wang-yingchen.pdf
https://trippel-lab.stanford.edu/pubs/pandora-isca-21.pdf
https://trippel-lab.stanford.edu/pubs/pandora-isca-21.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kohlbrenner.pdf
https://arxiv.org/pdf/2110.04751
https://dl.acm.org/doi/pdf/10.1145/3576915.3616611
https://dl.acm.org/doi/pdf/10.1145/3576915.3616611
https://www.usenix.org/system/files/sec24fall-prepub-1297-chen-boru.pdf
https://www.usenix.org/system/files/sec24fall-prepub-1297-chen-boru.pdf
https://www.usenix.org/system/files/sec24fall-prepub-1297-chen-boru.pdf

Tuesday,
17 Sep
2024

Memory
safety

Paper 1a: Smashing the Stack for Fun and Profit - Aleph
One (1996) – reformatted in 2017

Paper 1b: Exploiting Format String Vulnerabilities – scut
(2001)

Paper 2a: The advanced return-into-libc exploits - Nergal
(2001)

Paper 2b: Return-Oriented Programming: Systems,
Languages, and Applications - R. Roemer, E. Buchanan, H.
Shacham and S. Savage (2012)

Paper 1a
and 1b:
<fill in>

Paper 2a
and 2b:
<fill in>

Thursday,
19 Sep
2024

 Paper 1: Evaluating fuzz testing - George Klees, Andrew
Ruef, Benji Cooper, Shiyi Wei, Michael Hicks (2018)

Paper 1:
<fill in>

Tuesday,
24 Sep
2024

 Reserved for project discussions

Project description due by 25th September: 1 paragraph
writeup on canvas

Paper 1: Exploiting the DRAM rowhammer bug to gain
kernel privileges - Mark Seaborn with contributions by
Thomas Dullien (2015)

Paper 1:
Instructor

Thursday,
26 Sep
2024

 Paper 1a: AddressSanitizer: A Fast Address Sanity Checker -
Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, Dmitry Vyukov (2012)

Note: the presentation of this is premade in the link. The
challenge is to understand what this is doing in a complex
application – Google Chrome

Paper 1b: MiraclePtr - the UaF slayer - Keishi Hattori,
Bartek Nowierski (2022)

Additional resources for MiraclePtr

Paper 1a
and 1b:
<fill in>

Tuesday,
1 Oct
2024

 Paper 1: SoftBound: Highly compatible and complete
spatial memory safety for C - Santosh Nagarakatte,
Jianzhou Zhao, Milo M. K. Martin, Steve Zdancewic (2009)

AND

Paper 2: CETS: compiler enforced temporal safety for C -
Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
Steve Zdancewic (2010)

Paper 1:
<fill in>

Paper 2:
<fill in>

https://avicoder.me/papers/pdf/smashthestack.pdf
https://cs155.stanford.edu/papers/formatstring-1.2.pdf
http://www.phrack.org/issues/58/4.html#article
https://www.cs.utexas.edu/~hovav/dist/rop.pdf
https://www.cs.utexas.edu/~hovav/dist/rop.pdf
https://dl.acm.org/doi/pdf/10.1145/3243734.3243804
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://docs.google.com/presentation/d/1Faou7_Jxu03uPbVne5JYiUpx7q_w20wwNYw2pViHK80/edit#slide=id.ga8d3167efb_0_12
https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg/edit
http://www.cs.tufts.edu/comp/150BUGS/softbound-2009.pdf
http://www.cs.tufts.edu/comp/150BUGS/softbound-2009.pdf
https://repository.upenn.edu/bitstreams/87bf3a0b-349e-41fa-962a-bc18ce729ee8/download

Thursday,
3 Oct
2024

 Paper 1: Sys: A {Static/Symbolic} Tool for Finding Good
Bugs in Good (Browser) Code - Fraser Brown, Deian Stefan,
Dawson Engler (2020)

Paper 1:
<fill in>

Tuesday,
8 Oct
2024

Probabilistic
memory
safety

Paper 1a: Memory Tagging: A Memory Efficient Design -
Aditi Partap, Dan Boneh (2022)

Paper 1b: Security analysis of memory tagging - J. Bialek, K.
Johnson, M. Miller, and T. Chen (2020)

Paper 1a
and 1b:
<fill in>

Thursday,
10 Oct
2024

 Reserved some time for ad-hoc topics, incomplete prior
discussions and project discussions

Paper 1: Hacking blind - Andrea Bittau, Adam Belay, Ali
Mashtizadeh, David Mazieres, Dan Boneh (2014)

Paper 1:
<fill in>

Tuesday,
15 Oct
2024

Control flow
integrity

Paper 1: Control-Flow Integrity: Principles,

Implementations, and Applications - M. Abadi, M. Budiu,

Úlfar Erlingsson, and J. Ligatti (2009)

AND

Paper 2: Security Analysis of Processor Instruction Set
Architecture for Enforcing Control-Flow Integrity - Vedvyas
Shanbhogue, Deepak Gupta, Ravi Sahita (2019)

Paper 1:
<fill in>

Paper 2:
<fill in>

Thursday,
17 Oct
2024

 Paper 1: Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity - Nicolas Carlini, Antonio Barresi,
Mathias Payer, David Wagner, Thomas R. Gross (2015)

Paper 1:
<fill in>

Tuesday,
22 Oct
2024

Coarse-grain
defenses

Paper 1: Lightweight Fault Isolation: Practical, Efficient, and
Secure Software Sandboxing - Zachary Yedidia (2024)

AND

Paper 2: RLBox: Retrofitting Fine Grain Isolation in the
Firefox Renderer - Shravan Narayan, Craig Disselkoen, Tal
Garfinkel, Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, Deian Stefan (2020)

Paper 1:
<fill in>

Paper 2:
<fill in>

Thursday,
24 Oct
2024

 Paper 1: The Security Architecture of the Chromium
Browser - Adam Barth, Collin Jackson, Charles Reis, Google
Chrome Team (2008)

Project midterm writeup due by 28th October on canvas

Paper 1:
<fill in>

https://www.usenix.org/system/files/sec20-brown.pdf
https://www.usenix.org/system/files/sec20-brown.pdf
https://arxiv.org/pdf/2209.00307
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20memory%20tagging.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=05c49820bb35d0b8d7a2168a9124e506a0334b57
https://www.cse.usf.edu/~ligatti/papers/cfi-tissec.pdf
https://www.cse.usf.edu/~ligatti/papers/cfi-tissec.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring21/papers/shanbhogue:cet.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring21/papers/shanbhogue:cet.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf
https://dl.acm.org/doi/pdf/10.1145/3620665.3640408
https://dl.acm.org/doi/pdf/10.1145/3620665.3640408
https://arxiv.org/abs/2003.00572
https://arxiv.org/abs/2003.00572
http://css.csail.mit.edu/6.858/2018/readings/chromium.pdf
http://css.csail.mit.edu/6.858/2018/readings/chromium.pdf

Tuesday,
29 Oct
2024

JIT Security Paper 1: The Art of Exploitation: Attacking JavaScript
Engines - saelo (2016)

Paper 2: The Art of Exploitation: Compile Your Own Type
Confusion: Exploiting Logic Bugs in JavaScript JIT Engines -
saelo (2019)

Paper 1:
<fill in>

Paper 2:
<fill in>

Thursday,
31 Oct
2024

Formal
verification

Paper 1: Icarus: Trustworthy Just-In-Time Compilers with
Symbolic Meta-Execution - Naomi Smith, Abhishek Sharma,
John Renner, David Thien, Fraser Brown, Hovav Shacham,
Ranjit Jhala, Deian Stefan (2024)

Paper 1:
<fill in>

Tuesday,
5 Nov
2024

Hardware
defenses

Paper 1: Keystone: An open framework for architecting
trusted execution environments - Dayeol Lee, David
Kohlbrenner, Shweta Shinde, Krste Asanović, Dawn Song
(2020)

AND

Paper 2: Controlled-Channel Attacks: Deterministic Side
Channels for Untrusted Operating Systems - Yuanzhong Xu,
Weidong Cui, Marcus Peinado (2015)

Paper 1:
<fill in>

Paper 2:
<fill in>

Thursday,
7 Nov
2024

 Paper 1: Going Beyond the Limits of SFI: Flexible and
Secure Hardware-Assisted In-Process Isolation with HFI -
Shravan Narayan, Tal Garfinkel, Mohammadkazem Taram,
Joey Rudek, Daniel Moghimi, Evan Johnson, Chris Fallin,
Anjo Vahldiek-Oberwagner, Michael LeMay, Ravi Sahita,
Dean Tullsen, Deian Stefan (2023)

Paper 1:
<fill in>

Tuesday,
12 Nov
2024

Redesigning
OSes

Paper 1: Multiprogramming a 64 kB Computer Safely and

Efficiently - Amit Levy, Bradford Campbell, Branden Ghena,

Daniel B Giffin, Pat Pannuto, Prabal Dutta, Philip Levis

(2017)

Paper 2: Simple and Precise Static Analysis of Untrusted
Linux Kernel Extensions - Elazar Gershuni, Nadav Amit, Arie
Gurfinkel, Nina Narodytska, Jorge A. Navas, Noam Rinetzky,
Leonid Ryzhyk, Mooly Sagiv (2019)

Paper 1:
<fill in>

Paper 2:
<fill in>

Thursday,
14 Nov
2024

 No class today. Work on your projects.

Tuesday,
19 Nov
2024

Ecosystem
security

Paper 1: Click Trajectories: End-to-End Analysis of the Spam
Value Chain - Kirill Levchenko, Andreas Pitsillidis, Neha
Chachra, Brandon Enright, Márk Félegyházi, Chris Grier,
Tristan Halvorson, Chris Kanich, Christian Kreibich, He Liu,

Paper 1:
<fill in>

https://web.archive.org/web/20210915124935/http:/phrack.org/papers/attacking_javascript_engines.html
https://web.archive.org/web/20210915124935/http:/phrack.org/papers/attacking_javascript_engines.html
https://web.archive.org/web/20210824212047/http:/phrack.org/papers/jit_exploitation.html
https://web.archive.org/web/20210824212047/http:/phrack.org/papers/jit_exploitation.html
https://cseweb.ucsd.edu/~dstefan/pubs/smith:2024:icarus.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/smith:2024:icarus.pdf
https://dl.acm.org/doi/pdf/10.1145/3342195.3387532
https://dl.acm.org/doi/pdf/10.1145/3342195.3387532
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5ac7a4dca5509c9dee49d96b4c3c62cc1d0bb9dd
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5ac7a4dca5509c9dee49d96b4c3c62cc1d0bb9dd
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf
https://dl.acm.org/doi/pdf/10.1145/3132747.3132786
https://dl.acm.org/doi/pdf/10.1145/3132747.3132786
https://vbpf.github.io/assets/prevail-paper.pdf
https://vbpf.github.io/assets/prevail-paper.pdf
https://cseweb.ucsd.edu/~savage/papers/Oakland11.pdf
https://cseweb.ucsd.edu/~savage/papers/Oakland11.pdf

Damon McCoy, Nicholas Weaver, Vern Paxson, Geoffrey M.
Voelker, Stefan Savage (2011)

AND

Paper 2: Re: CAPTCHAs – Understanding CAPTCHA-Solving
Services in an Economic Context - Marti Motoyama, Kirill
Levchenko, Chris Kanich, Damon McCoy,
Geoffrey M. Voelker and Stefan Savage (2010)

Paper 2:
<fill in>

Thursday,
21 Nov
2024

Usable
security

Paper 1: Alice in warningland: a {Large-Scale} field study of
browser security warning effectiveness - Devdatta Akhawe,
Adrienne Porter Felt (2013)

Paper 1:
<fill in>

Tuesday,
26 Nov
2024

 Thanksgiving break, no class NA

Thursday,
28 Nov
2024

 Thanksgiving break, no class NA

Tuesday,
3 Dec
2024

Project
presentation

Final presentation for projects, part 1 Group 1:
<fill in>
Group 2:
<fill in>
…

Thursday,
5 Dec
2024

 Final presentation for projects, part 2

Project midterm writeup due by 6th December on canvas

Group 1:
<fill in>
Group 2:
<fill in>
…

https://cseweb.ucsd.edu/~savage/papers/UsenixSec10.pdf
https://cseweb.ucsd.edu/~savage/papers/UsenixSec10.pdf
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_akhawe.pdf
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_akhawe.pdf

