W O N kAW RE

L e T
N o v s W N P O

CS380S: Graduate Computer Security

Course Contactcoceeeiiiieee e
0o 10| = ¢=To [N1 4=] g T=T 0 £
Grading / AENAANCEveeeeereeceee et
Class attenNdanCe.......uiviieiiiiecieee e
In-class paper presentation........cccccevveiieeiercieee e
In-class post presentation qUIZZES........cccceecvveeeeciieececiiee e,
Visiting scholar presentationscccceeecvieeeeciieeeccieee e,
Project Selection........ccveeiicieie i
Class project midterm WriteUpcccveeevcieeeerciiee e,
Class project final writeup, presentation, and quality score
o =Yoo L= TR
Policy on Academic Accommodationscccceeecvveeeecveeenn.
Academic INtEZIILY ..ocvveee e
Artificial intelligenCecocvveeiiciee e
Religious holy days........cooocciieiicciieecceee e
Class RECOIAINGS.......ceeeeiiieeeeieee et e

(01T =] 1Y o =T TR

1. Course Contact

Dr. Shravan Narayan

Classes: 12:30pm to 2pm at GDC 2.410 on Tuesday and Thursday.

Office Hours: At GDC 6.430, 1pm to 1:45pm on Wednesday and 2pm to 3pm on Thursday.
(Email to let me know you’re coming, or if you need alternate meeting times)

Email: shr@cs.utexas.edu (Expect a response within 48 hours)

TA/Grader: Rohan Gangaraju rgangar@utexas.edu (Always cc the Instructor)

Canvas: https://utexas.instructure.com/courses/1441038

(Syllabus last updated: Jan 12, 2026)

2. Course requirements

It is expected that all students have taken CS 361s or equivalent. While this is technically not a hard
requirement, students without this experience will likely find the course extremely challenging. Students
without the requisite background of CS 361s who still want to take this course are expected to look
through the readings in CS361s as needed on their own time to keep up with this course.

At a minimum, students are expected to have knowledge of programming with C, compiling C
applications, the memory layout of C applications including stack and heap, as well as standard terms
and operations from programming and compilation such as how control flow (branches, indirect function
calls) work, what a program counter does etc. While the course will introduce the concept of memory
safety, this is mainly meant as a refresher. Students should be familiar with this and those unfamiliar
with memory safety are expected to go through the additional material listed in this course calendar or
from UT’s CS361s course.

3. Grading / Attendance

Grade breakdown is as follows:

e (Class attendance — 10% (twice a week after the first week)
e In-class paper presentations — 15%
e In-class post presentation quizzes — 15%
e In-person attendance of visiting scholar presentations
o On Secure Crypto Systems Feb 17", 11am, GDC 2.216 — 4%
o Any 3 additional presentations (See details on Canvas) — 6%
e Project selection — 0% (one para writeup due on Feb 10%)
e Class project midterm writeup — 10% (on Mar 26%)
e C(Class project final
o Presentation —15% (on Apr 21%, Apr 23™)
o Final writeup — 10% (once on Apr 27%")
o Project quality — 15%

Each of these are explained in the next few sections.

mailto:shr@cs.utexas.edu
mailto:rgangar@utexas.edu
https://utexas.instructure.com/courses/1441038
https://www.cs.utexas.edu/~hovav/class/cs361s-s24/

Grading scheme (Final scores maybe curved by the instructor)

A :100% to 94%
o A-:94%to 90%
e B+:90% to 87%
e B:87%to84%
o B-:84%to 80%
o C+:80%to77%
o C:77%to74%
o C-:74% 1o 70%
o D+:70%to 67%
o D:67%to64%
e D-:64%1to61%
o F:61%to0%

4. Class attendance

Attendance in this class is required starting week 2 (Jan 20™"). See “Error! Reference source not found.”
below if you need to skip classes. Attending the last week of class is required as you will be required to
present your project — only UT excused absences will be accommodated.

This class has a total of 3 skips for class attendance that you can use without any explanation/email/note
to me. These are for any situations that may come up that is not recognized as a UT-approved reason for
skipping class/assignments.

Each subsequent skip will result in a loss of 2% from your total grade. Skipping more than 8 classes in
total will automatically result in a failing grade.

Suggestion: try to reserve these skips for emergencies.

5. In-class paper presentation

Each student is expected to present one class topic/research-papers as a team of two starting Jan 20™.
The topic will be from a list of preselected papers listed in Class Calendar section in this document. The
topic sign-up will be available on the Canvas website and are on a first-come first-serve basis. The
presentation can use powerpoint or other suitable presentation aids and is expected to have 50 mins of
content with 10 mins of Q&A during or at the end of the presentation. Presenters should be well versed
in both the papers as well as background material. Bonus points for including some background or follow
up research in the presentation.

Quiz question preparation: Presenters are also expected to make a list of 5 questions that will be
answered by the other students in the class. See next section for details.

Note: Topics/Papers may be modified based on student interest/new security news etc. This will be done
with at least one week notice, and after discussion with the student who signed up for the topic.

6. In-class post presentation quizzes

Presenters are also expected to make a list of 5 questions which can be answered in a sentence. These
will be answered by the other students in the class. The goal here is to test whether everyone was
paying attention during the presentations. The top 15 quiz scores for each student will be considered
towards this portion of the grade.

7. Visiting scholar presentations

In the spring semester, visiting scholars and graduate students from different universities present talks at
UT Austin about their research. These talks are some of the highest quality research talks that are
accessible — even better than conference talks as they are one-hour long presentations that are meant
for a general CS audience rather than expert practitioners.

The talks are typically held at 11am on specific Tuesdays, Thursdays, and Mondays at 11am on GDC
2.216. A precise schedule will be made available on Canvas.

On Feb 17, 2026, 11am, a visiting scholar will be presenting their research on employing cryptographic
techniques to build secure systems. Since this is a topic we don’t cover in this course, attending this talk
is a required part of this course and consists of 4% of your grade. Beyond this talk, you may attend any 3
of the remaining talks that are scheduled for this semester.

Proof of attendance: To submit proof that you have attended the talk, take a picture of an interesting
slide in the speaker’s talk (DO NOT DISTURB THE SPEAKER WHEN DOING THIS). You will be able to upload
the picture to Canvas. Each student is expected to take and upload a picture themselves — any re-use of
pictures amongst students is prohibited and will be reported as an instance of cheating to the Dean’s
office.

Note: Even though the talk is available on zoom, you must attend the four talks in-person. Zoom
attendance will not be credited, as we don’t track zoom attendances in any way.

Can’t attend the visiting scholar presentations due to other commitments?
Talk to the instructor and then sign up to present a second topic in the class. The second presentation’s
score will be used in place of attending the visiting scholar talks.

8. Project Selection

The goal for the course project is to first develop or build upon existing security hardening techniques,
next, modify existing applications to use the security technique, and finally evaluate their impact on
security and performance. The modifications will need to be evaluated on large popular applications
such as browsers, the Linux kernel, frameworks like tensor flow etc.

The projects should be done in groups of up to 3. Groups are expected to clearly document what
contributions each member of the team has made to the project.

You are welcome to develop your own project ideas in systems security and discuss this with me.
Alternately, you can build on or implement one of the existing project ideas listed in this document
under Project ideas and additional ideas | will share in class.

Project group and topics selection should be complete by Feb 10, although you are welcome to select
your project earlier as well. A one paragraph writeup is due in Canvas describing your project (this is not
graded). If you choose to develop your own project ideas, you must get my approval before using this as
your class project. You are welcome to ask me about possible projects at any time in the course.

You are encouraged to be ambitious and try a challenging project that you think would be fun. Students
who completely execute an easy project will score the same as students who have partial success on an
ambitious project.

9. Class project midterm writeup

Project groups are expected to provide a two-page single-spaced writeup on the progress of their project
on Mar 26" via Canvas.

10. Class project final writeup, presentation, and quality score

Project groups are expected to provide a five-page single-spaced writeup on their project on Apr 27 via
Canvas as well as a 15-minute presentation in class of their project on Apr 21 or Apr 23™. The exact day
of the presentation will be decided in class. Additionally, students will receive a score based on project
quality — a score assigned based on effort, success, ambition, and clarity of the project.

11. Projectideas

Here are a few project ideas that you are welcome to use as this course’s project. You are also welcome
to develop your own project ideas in systems security and discuss this with me. If you choose to develop
your own project ideas, you must get my approval to use your idea as this course project.

e Use RLBox to sandbox a library in a major application or framework. To sandbox the library,
configure RLBox and modify the build scripts to use a WebAssembly sandbox. Compare the
performance of this with that of a Native Client sandbox. A tutorial to use RLBox is available here
https://rlbox.dev/. Some examples of libraries that have been sandboxed in the past (please find
new examples for this project):

o Sandboxing libjpeg in the TensorFlow framework
o Sandboxing libjpeg (or any file format parsing library) in ClamAV
o Sandboxing markdown-to-html libraries in the Apache web server or in standalone apps

Pre-reading: RLBox: Retrofitting Fine Grain Isolation in the Firefox Renderer
Skills: Comfortable with C++. Experience using Makefiles will help but is not necessary.
Level of difficulty: Easy/Moderate.

e Speedup Chrome’s compressed pointer heap to use memory accesses based on Intel x86
segmentation. Similar to Native Client or WebAssembly, Chrome uses a contiguous heap for
JavaScript code, as you will read about in class. Chrome accesses these contiguous memories
using the usual load/store instructions. However, prior research shows that Intel x86 allows a
more optimized way to access contiguous memories. This low-level optimization leverages
instructions that are part of Intel x86 segmentation — instructions optimized to access contiguous
memories. Modify Chrome’s access of the contiguous JavaScript heap from using standard x86
load/store instructions to instructions that can use segmentation instructions. This requires two

https://rlbox.dev/
https://sunny.garden/@blinkygal/110927958423301359
https://arxiv.org/abs/2003.00572
https://plas2022.github.io/files/pdf/SegueColorGuard.pdf

changes --- changes in Chrome’s C++ code and changes in Chrome’s JITtedcode. For Chrome’s
C++ code, clang provides annotations in C/C++ that can be used to modify code to leverage
segmentation instructions. For Chrome’s JIT code, you can modify Chrome’s JIT compiler directly
to use segmentation instructions. Modify Chrome to implement this optimization and measure
the performance difference.

Pre-reading: Segue & ColorGuard: Optimizing SFI Performance and Scalability on Modern x86
Skills: Comfortable with C++ and clang. Experience working with Chrome will help but is not
necessary.

Level of difficulty: Moderate/Hard.

Implement a version of RLBox’s tainted type in Rust. As you will read in the class, the RLBox
framework provides “tainted” types to safely handle untrusted data coming from a particular
sandbox’s heap. When using a tainted integer, RLBox allows arithmetic on the tainted integer but
does not allow the tainted integer to be used in place of a regular integer. When dereferencing a
tainted pointer, RLBox automatically checks that the pointer being dereferenced is within the
sandbox’s heap. Recreate this behavior in Rust using the following setup. Use a Rust “Vec<u8>"
to represent the sandbox heap. Then provide APIs to access this Rust Vec<u8> that return data
wrapped in a new tainted type that you create in Rust. This tainted type must ensure that the
tainted data being returned cannot accidentally be misused but continue to allow simple safe
operations like arithmetic on a tainted int.

Pre-reading: RLBox: Retrofitting Fine Grain Isolation in the Firefox Renderer

Skills: Comfortable with Rust.

Level of difficulty: Moderate/Hard.

Develop a scheme that compiler backends can follow to ensure the emitted instructions would
simply abort in the presence of a 1-bit flip in any one of instructions. Compilers today emit
assembly that when modified by Rowhammer can be used to bypass security checks. For
example, assume that we have a load instruction “lw al, 0(a2)”. al and a2 are registers. This
instruction loads from the memory location a2 and stores the loaded value in register al.
Assuming with Rowhammer, you could flip a single bit in this instruction which causes the
instruction to be parsed differently. The instruction could now become “lw a1, 0(a4)” or “Iw a1,
0(a8)”. Then a simple encoding scheme that keeps this safe would be to emit “lw a1, 0(a2)” only
after setting registers a4 and a8 to zero. This is because execution of “Ilw al, 0(a4)” or “lw al,
0(a8)” would fault as it in-effect dereferences a null pointer. You can modify the tiny C compiler
to use this new encoding scheme. This project can target the RISC-V or ARM instruction
encoding.

Pre-reading: Exploiting the DRAM rowhammer bug to gain kernel privileges

Skills: Comfortable with RISC-V or ARM. Familiarity with the tiny C compiler would help as well.
Level of difficulty: Moderate/Hard.

Implement HFI in QEMU. HFI is an instruction set extension designed for CPUs so they can allow
applications to isolate components. The implementation can be in x86, ARM or RISC-V.
Pre-reading: Going Beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process
Isolation with HFI

Skills: Comfortable with the chosen CPU architecture. Familiarity with QEMU would help as
well.

Level of difficulty: Easy.

https://plas2022.github.io/files/pdf/SegueColorGuard.pdf
https://arxiv.org/abs/2003.00572
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf

Sandboxing runtimes isolate components of an application to a subset of the address space by
applying bounds checks on all memory accesses. Construct a sandboxing runtime that isolates
the components of an application by modifying the page tables entries of an application
dynamically. Concretely, these page table modifications will ensure that a component is isolated
by restricting all page entries to only point to a fixed range of the virtual address space. For
example, component 1 may be restricted to the space 8GB to 16GB while component 2 is
restricted from 16GB to 32GB etc. Modifying the page entries of an application can be
performed using libraries like PTEditor. One subtle point to note here is that for correct
functionality, you must ensure each component has its own allocator and each allocator only
allocates memory within the permitted space. You can do this either by using a custom allocator
that you modify like dlmalloc, or you can do this by building on an existing sandboxing tool which
already provides a runtime for this --- for instance wasm2c or LFI. If you do build on an existing
runtime, you can disable any bounds checks these tools add.

Pre-reading: Lightweight Fault Isolation: Practical, Efficient, and Secure Software Sandboxing
Skills: Comfortable with C/C++ and the linux kernel. Familiarity with sandboxing will also help.
Level of difficulty: Moderate

Reproduce the results of Arabica, a tool that isolates native libraries accessed by Java programs
through the JNI interface.

Pre-reading: Arabica: JVM-Portable Sandboxing of Java’s Native Libraries

Skills: Comfortable with Java and C++. Familiarity with JVM implementation would also help
Level of difficulty: Moderate/Hard

RLBox is a sandboxing framework that allows applications to sandbox libraries with
WebAssembly (wasm) which isolates the effects of the library from the application. Modify the
RLBox sandboxing framework to concurrently execute each function call in a separate process as
well. You can then use this mechanism to figure out if sandboxing with Wasm is faster or slower
than sandboxing with processes for each function call to the sandboxed library. Modify RLBox to
dynamically choose between the two options depending on which approach is faster for each
function call. Compare the performance to stock RLBox.

Pre-reading: RLBox: Retrofitting Fine Grain Isolation in the Firefox Renderer

Skills: Comfortable with C++.

Level of difficulty: Easy/Moderate

If you’re still having difficulties picking a project, please talk to the instructor to brainstorm.

Policy on Academic Accommodations

The university is committed to creating an accessible and inclusive learning environment consistent with
university policy and federal and state law. Please let me know if you experience any barriers to learning
so | can work with you to ensure you have equal opportunity to participate fully in this course. If you are
a student with a disability, or think you may have a disability, and need accommodation please contact
Disability and Access (D&A). Please refer to D&A’s website for contact and more information:
http://diversity.utexas.edu/disability/. If you are already registered with D&A , please deliver your

Accommodation Letter to me as early as possible in the semester so we can discuss your approved
accommodation and needs in this course.

https://github.com/misc0110/PTEditor
https://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/WebAssembly/wabt
https://dl.acm.org/doi/pdf/10.1145/3620665.3640408
https://dl.acm.org/doi/pdf/10.1145/3620665.3640408
https://www.researchgate.net/profile/Gang-Tan/publication/267685424_JVM-Portable_Sandboxing_of_Java's_Native_Libraries/links/54ea51590cf25ba91c82e8bb/JVM-Portable-Sandboxing-of-Javas-Native-Libraries.pdf
https://www.researchgate.net/profile/Gang-Tan/publication/267685424_JVM-Portable_Sandboxing_of_Java's_Native_Libraries/links/54ea51590cf25ba91c82e8bb/JVM-Portable-Sandboxing-of-Javas-Native-Libraries.pdf
https://arxiv.org/abs/2003.00572
http://diversity.utexas.edu/disability/

13. Academic Integrity

Recall the Student Honor Code: “As a student of The University of Texas at Austin, | shall abide by the
core values of the University and uphold academic integrity.”

Students who violate University rules on academic dishonesty are subject to disciplinary penalties,
including the possibility of failure in the course and/or dismissal from the University. Since such
dishonesty harms the individual, all students, and the integrity of the University, policies on academic
dishonesty will be strictly enforced. For further information, please visit the Student Conduct and
Academic Integrity Website.

To detect instances of academic integrity violations in programming assignments we may use 3rd party
software.

14. Artificial intelligence

The use of artificial intelligence tools (such as ChatGPT) are allowed, except for the in-class quizzes.
However, it is your responsibility to validate any information you receive from them. This applies to all
content in the presentations. Any errors due to Al tools will be graded as if they are your errors.

15. Religious holy days

Religion (or lack thereof) is an important part of who we are. If a holy day observed by your religion falls
during the semester and you require accommodation due to that, please let me know as soon as
possible. Email is an acceptable form of communication. To guarantee accommodation around
presentations or other big deadlines, | will need notice of at least two weeks. If you are unable (or
forget!) to provide that notice, please contact me anyway in case | can still accommodate you.

University-required language: A student who is absent from an examination or cannot meet an
assignment deadline due to the observance of a religious holy day may take the exam on an alternate
day or submit the assignment up to 24 hours late without penalty, ONLY if proper notice of the planned
absence has been given. Notice must be given at least 14 days prior to the classes which will be missed.
For religious holy days that fall within the first two weeks of the semester, notice should be given on the
first day of the semester. Notice must be personally delivered to the instructor and signed and dated by
the instructor, or sent certified mail. Email notification will be accepted if received, but a student
submitting email notification must receive email confirmation from the instructor.

16. Class Recordings

While there are no plans to record this class, this may change, and classes may be recorded. Class
recordings, if provided, are reserved only for students in this class for educational purposes and are
protected under FERPA. The recordings should not be shared outside the class in any form. Violation of
this restriction by a student could lead to Student Misconduct proceedings.

17. Class Calendar

https://deanofstudents.utexas.edu/conduct/
https://deanofstudents.utexas.edu/conduct/

Introduction

Memory safety
attacks

Memory safety
defenses

No class today
Introduction, syllabus etc.

How to read a paper S. Keshav (2007)

Paper discussion assignments

Memory safety:

- Chapter 1 from How Memory Safety Violations Enable
Exploitation of Programs - M. Payer (2018)

- Sections 30.1 and 30.2 Low-Level Software Security by
Example - Ulfar Erlingsson, Yves Younan, and Frank
Piessens (2010)

On giving talks: (An Opinionated Talk) On Preparing Good
Talks — Ranjit Jhala (2018)

Smashing the Stack for Fun and Profit - Aleph One (1996) —
reformatted in 2017

Beyond Stack Smashing: Recent Advances in Exploiting
Buffer Overruns - Pincus, Baker (2004)

Exploiting Format String Vulnerabilities — scut (2001)

Basic Integer Overflows — blexim (2002)
Understanding Integer Overflow in C/C++ - Will Dietz, Peng
Li, John Regehr, Vikram Adve (2015)

SoftBound: Highly compatible and complete spatial
memory safety for C - Santosh Nagarakatte, Jianzhou Zhao,
Milo M. K. Martin, Steve Zdancewic (2009)

CETS: compiler enforced temporal safety for C - Santosh
Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, Steve
Zdancewic (2010)

Updated writeup (2024): Full Spatial and Temporal
Memory Safety for C - Santosh Nagarakatte (2024)

AddressSanitizer: A Fast Address Sanity Checker -
Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, Dmitry Vyukov (2012)

Instructor

<Student
sign up 1>

<Student
sign up 2>

<Student
sign up 1>

<Student
sign up 2>

<Student
sign up 1>

<Student
sign up 2>

<Student
sign up 1>

<Student
sign up 2>

http://svr-sk818-web.cl.cam.ac.uk/keshav/papers/07/paper-reading.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/payer:how.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/payer:how.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring22/papers/erlingsson:low.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring22/papers/erlingsson:low.pdf
https://www.youtube.com/watch?v=ZLXtAJPk5r0
https://www.youtube.com/watch?v=ZLXtAJPk5r0
https://avicoder.me/papers/pdf/smashthestack.pdf
https://people.eecs.berkeley.edu/~daw/teaching/cs261-f09/reading/beyondsmashing.pdf
https://people.eecs.berkeley.edu/~daw/teaching/cs261-f09/reading/beyondsmashing.pdf
https://cs155.stanford.edu/papers/formatstring-1.2.pdf
https://phrack.org/issues/60/10#article
https://dl.acm.org/doi/pdf/10.1145/2743019
http://www.cs.tufts.edu/comp/150BUGS/softbound-2009.pdf
http://www.cs.tufts.edu/comp/150BUGS/softbound-2009.pdf
https://repository.upenn.edu/bitstreams/87bf3a0b-349e-41fa-962a-bc18ce729ee8/download
https://people.cs.rutgers.edu/~santosh.nagarakatte/papers/safety-sp-2024.pdf
https://people.cs.rutgers.edu/~santosh.nagarakatte/papers/safety-sp-2024.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf

Control-flow
attacks and
defenses

Memory safety
attacks

Bug finding

MemorySanitizer: fast detector of uninitialized memory
use in C++ - Evgeniy Stepanov, Konstantin Serebryany
(2015)

UndefinedBehaviorSanitizer - Clang 22.0.0 git
documentation

ThreadSanitizer — data race detection in practice -
Konstantin Serebryany, Timur Iskhodzhanov (2009)

The advanced return-into-libc exploits - Nergal (2001)

Return-Oriented Programming: Systems, Languages, and
Applications - R. Roemer, E. Buchanan, H. Shacham and S.
Savage (2012)

(Skip sections 5 and 6) Control-Flow Integrity: Principles,
Implementations, and Applications - M. Abadi, M. Budiu,
Ulfar Erlingsson, and J. Ligatti (2009)

Security Analysis of Processor Instruction Set Architecture
for Enforcing Control-Flow Integrity - Vedvyas
Shanbhogue, Deepak Gupta, Ravi Sahita (2019)

Control-Flow Bending: On the Effectiveness of Control-
Flow Integrity - Nicolas Carlini, Antonio Barresi, Mathias
Payer, David Wagner, Thomas R. Gross (2015)

Note: Project selection deadline. Ungraded short writeup
due.

Hacking blind - Andrea Bittau, Adam Belay, Ali
Mashtizadeh, David Mazieres, Dan Boneh (2014)

TBD: Analysis of a real attack

Mandatory visiting scholar presentation attendance — Feb
17th, 11am, GDC 2.216

KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs - Cristian
Cadar, Daniel Dunbar, Dawson Engler (2008)

<Student
sign up 1>

<Student
sign up 2>

Instructor

<Student
sign up 1>

<Student
sign up 2>

<Student
sign up 1>

<Student
sign up 2>

<Student
sign up 1>

<Student
sign up 2>

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43308.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43308.pdf
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://dl.acm.org/doi/pdf/10.1145/1791194.1791203
http://www.phrack.org/issues/58/4.html#article
https://www.cs.utexas.edu/~hovav/dist/rop.pdf
https://www.cs.utexas.edu/~hovav/dist/rop.pdf
https://www.cse.usf.edu/~ligatti/papers/cfi-tissec.pdf
https://www.cse.usf.edu/~ligatti/papers/cfi-tissec.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring21/papers/shanbhogue:cet.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring21/papers/shanbhogue:cet.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=05c49820bb35d0b8d7a2168a9124e506a0334b57
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/cadar/cadar.pdf
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/cadar/cadar.pdf

Sandboxing

Secure Browser
architecture

JIT Security

Sys: A {Static/Symbolic} Tool for Finding Good Bugs in
Good (Browser) Code - Fraser Brown, Deian Stefan,
Dawson Engler (2020)

AFL fuzzer
- Design
- Docs
- Follow up: AFL++: Combining Incremental Steps of
Fuzzing Research - Andrea Fioraldi, Dominik Maier,
Heiko EiRkfeldt, Marc Heuse (2020)

Evaluating fuzz testing - George Klees, Andrew Ruef, Benji
Cooper, Shiyi Wei, Michael Hicks (2018)

Evaluating SFI for a CISC Architecture - Stephen
McCamant, Greg Morrisett (2006)

Bringing the web up to speed with WebAssembly -
Andreas Haas, Andreas Rossberg, Derek L. Schuf, Ben L.
Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, JF Bastien (2017)

RLBox: Retrofitting Fine Grain Isolation in the Firefox
Renderer - Shravan Narayan, Craig Disselkoen, Tal
Garfinkel, Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, Deian Stefan (2020)

The Security Architecture of the Chromium Browser -
Adam Barth, Collin Jackson, Charles Reis, Google Chrome
Team (2008)

Site isolation: Process separation for web sites within the
browser - Charles Reis, Alexander Moshchuk, and Nasko
Oskov (2019)

The Art of Exploitation: Attacking JavaScript Engines - saelo
(2016)

The Art of Exploitation: Compile Your Own Type Confusion:

Exploiting Logic Bugs in JavaScript JIT Engines - saelo
(2019)

<Student
sign up 1>

<Student
sign up 2>

<Student
sign up 1>

<Student
sign up 2>

Instructor

<Student
sign up 1>

<Student
sign up 2>

<Student
sign up 1>

<Student
sign up 2>

<Student
sign up 1>

<Student
sign up 2>

https://www.usenix.org/system/files/sec20-brown.pdf
https://www.usenix.org/system/files/sec20-brown.pdf
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://afl-1.readthedocs.io/en/latest/index.html
https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf
https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf
https://dl.acm.org/doi/pdf/10.1145/3243734.3243804
https://www.usenix.org/legacy/event/sec06/tech/mccamant/mccamant.pdf
https://dl.acm.org/doi/pdf/10.1145/3062341.3062363
https://arxiv.org/abs/2003.00572
https://arxiv.org/abs/2003.00572
http://css.csail.mit.edu/6.858/2018/readings/chromium.pdf
https://www.usenix.org/system/files/sec19-reis.pdf
https://www.usenix.org/system/files/sec19-reis.pdf
https://phrack.org/issues/70/3#article
https://phrack.org/issues/70/9#article
https://phrack.org/issues/70/9#article

Thu,
Mar
12

Tue,

Mar

17

Thu,

Mar

19

Tue, Side-channel
Mar attacks

24

Thu,
Mar
26

Tue,
Mar
31

Thu, Hardware-
Apr 02 security

Tue,
Apr 07

Fuzzilli: Fuzzing for JavaScript JIT Compiler Vulnerabilities -
Samuel GroR, Simon Koch, Lukas Bernhard, Thorsten Holz,
Martin Johns (2023)

Cover some example bugs uncovered by Fuzzilli. This link
also has extra resources for Fuzzilli.

Spring break, no class

Spring break, no class

Introduction and background

Side-channels: Sections 1 to 4 from
Transient-Execution Attacks: A Computer Architect
Perspective — Luis Fiolhais, Leonel Sousa (2023)

Spectre attacks: Exploiting speculative execution - Paul
Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, Michael Schwarz, Yuval Yarom
(2018)

For the below paper. Skip section 4.2 to 4.8

A Systematic Evaluation of Transient Execution Attacks and
Defenses - Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, Daniel Gruss (2019)

Exploiting the DRAM rowhammer bug to gain kernel
privileges - Mark Seaborn with contributions by Thomas
Dullien (2015)

SoK: Hardware-supported Trusted Execution Environments

- Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde,
Srdjan Capkun, Ronald Perez (2022)

Memory Tagging: A Memory Efficient Design — Aditi
Partap, Dan Boneh (2022)

<Student
sign up 1>

<Student
sign up 2>

Instructor

Instructor

<Student
sign up 1>

<Student
sign up 2>

<Student
sign up 1>

<Student
sign up 2>

Instructor

https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_f290_paper.pdf
https://github.com/googleprojectzero/fuzzilli?tab=readme-ov-file
https://dl.acm.org/doi/pdf/10.1145/3603619
https://dl.acm.org/doi/pdf/10.1145/3603619
https://dl.acm.org/doi/pdf/10.1145/3399742
https://www.usenix.org/system/files/sec19-canella.pdf
https://www.usenix.org/system/files/sec19-canella.pdf
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://arxiv.org/pdf/2205.12742
https://arxiv.org/pdf/2209.00307

Web Security

ARM MTE Performance in Practice (link coming) — Taehyun
Noh, Yingchen Wang, Tal Garfinkel, Mahesh Madhav,
Daniel Moghimi, Mattan Erez, Shravan Narayan (2026)

Tor: The Second-Generation Onion Router - Roger
Dingledine, Nick Mathewson, Paul Syverson (2004)

Top changes in Tor since the 2004 design paper (Part 1) —
Nick Mathewson (2012)
Top changes in Tor since the 2004 design paper (Part 2) —
Nick Mathewson (2012)
Top changes in Tor since the 2004 design paper (Part 3) —
Steven Murdoch (2012)

TBD — CSRF etc
Buffer class. Maybe filled with another paper.
Final presentation for projects, part 1

Final presentation for projects, part 2

<Student
sign up 1>

<Student
sign up 2>

https://css.csail.mit.edu/6.5660/2024/readings/tor-design.pdf
https://blog.torproject.org/top-changes-tor-2004-design-paper-part-1/
https://blog.torproject.org/top-changes-tor-2004-design-paper-part-2/
https://blog.torproject.org/top-changes-tor-2004-design-paper-part-3/

