
CS380S: Graduate Computer Security

1. Course Contact ... 2

2. Course requirements .. 2

3. Grading / Attendance ... 2

4. Class attendance ... 3

5. In-class paper presentation .. 3

6. In-class post presentation quizzes .. 4

7. Visiting scholar presentations .. 4

8. Project Selection ... 4

9. Class project midterm writeup ... 5

10. Class project final writeup, presentation, and quality score.. 5

11. Project ideas ... 5

12. Policy on Academic Accommodations ... 7

13. Academic Integrity ... 8

14. Artificial intelligence .. 8

15. Religious holy days ... 8

16. Class Recordings ... 8

17. Class Calendar .. 8

1. Course Contact
Dr. Shravan Narayan

Classes: 12:30pm to 2pm at GDC 2.410 on Tuesday and Thursday.

Office Hours: At GDC 6.430, 1pm to 1:45pm on Wednesday and 2pm to 3pm on Thursday.

(Email to let me know you’re coming, or if you need alternate meeting times)

Email: shr@cs.utexas.edu (Expect a response within 48 hours)

TA/Grader: Rohan Gangaraju rgangar@utexas.edu (Always cc the Instructor)

Canvas: https://utexas.instructure.com/courses/1441038

(Syllabus last updated: Jan 12th, 2026)

2. Course requirements
It is expected that all students have taken CS 361s or equivalent. While this is technically not a hard

requirement, students without this experience will likely find the course extremely challenging. Students

without the requisite background of CS 361s who still want to take this course are expected to look

through the readings in CS361s as needed on their own time to keep up with this course.

At a minimum, students are expected to have knowledge of programming with C, compiling C

applications, the memory layout of C applications including stack and heap, as well as standard terms

and operations from programming and compilation such as how control flow (branches, indirect function

calls) work, what a program counter does etc. While the course will introduce the concept of memory

safety, this is mainly meant as a refresher. Students should be familiar with this and those unfamiliar

with memory safety are expected to go through the additional material listed in this course calendar or

from UT’s CS361s course.

3. Grading / Attendance

Grade breakdown is as follows:

• Class attendance – 10% (twice a week after the first week)

• In-class paper presentations – 15%

• In-class post presentation quizzes – 15%

• In-person attendance of visiting scholar presentations

o On Secure Crypto Systems Feb 17th, 11am, GDC 2.216 – 4%

o Any 3 additional presentations (See details on Canvas) – 6%

• Project selection – 0% (one para writeup due on Feb 10th)

• Class project midterm writeup – 10% (on Mar 26th)

• Class project final

o Presentation – 15% (on Apr 21st, Apr 23rd)

o Final writeup – 10% (once on Apr 27th)

o Project quality – 15%

Each of these are explained in the next few sections.

mailto:shr@cs.utexas.edu
mailto:rgangar@utexas.edu
https://utexas.instructure.com/courses/1441038
https://www.cs.utexas.edu/~hovav/class/cs361s-s24/

Grading scheme (Final scores maybe curved by the instructor)

• A : 100% to 94%

• A- : 94% to 90%

• B+ : 90% to 87%

• B : 87% to 84%

• B- : 84% to 80%

• C+ : 80% to 77%

• C : 77% to 74%

• C- : 74% to 70%

• D+ : 70% to 67%

• D : 67% to 64%

• D- : 64% to 61%

• F : 61% to 0%

4. Class attendance
Attendance in this class is required starting week 2 (Jan 20th). See “Error! Reference source not found.”

below if you need to skip classes. Attending the last week of class is required as you will be required to

present your project – only UT excused absences will be accommodated.

This class has a total of 3 skips for class attendance that you can use without any explanation/email/note

to me. These are for any situations that may come up that is not recognized as a UT-approved reason for

skipping class/assignments.

Each subsequent skip will result in a loss of 2% from your total grade. Skipping more than 8 classes in

total will automatically result in a failing grade.

Suggestion: try to reserve these skips for emergencies.

5. In-class paper presentation
Each student is expected to present one class topic/research-papers as a team of two starting Jan 20th.

The topic will be from a list of preselected papers listed in Class Calendar section in this document. The

topic sign-up will be available on the Canvas website and are on a first-come first-serve basis. The

presentation can use powerpoint or other suitable presentation aids and is expected to have 50 mins of

content with 10 mins of Q&A during or at the end of the presentation. Presenters should be well versed

in both the papers as well as background material. Bonus points for including some background or follow

up research in the presentation.

Quiz question preparation: Presenters are also expected to make a list of 5 questions that will be

answered by the other students in the class. See next section for details.

Note: Topics/Papers may be modified based on student interest/new security news etc. This will be done

with at least one week notice, and after discussion with the student who signed up for the topic.

6. In-class post presentation quizzes
Presenters are also expected to make a list of 5 questions which can be answered in a sentence. These

will be answered by the other students in the class. The goal here is to test whether everyone was

paying attention during the presentations. The top 15 quiz scores for each student will be considered

towards this portion of the grade.

7. Visiting scholar presentations
In the spring semester, visiting scholars and graduate students from different universities present talks at

UT Austin about their research. These talks are some of the highest quality research talks that are

accessible – even better than conference talks as they are one-hour long presentations that are meant

for a general CS audience rather than expert practitioners.

The talks are typically held at 11am on specific Tuesdays, Thursdays, and Mondays at 11am on GDC

2.216. A precise schedule will be made available on Canvas.

On Feb 17th, 2026, 11am, a visiting scholar will be presenting their research on employing cryptographic

techniques to build secure systems. Since this is a topic we don’t cover in this course, attending this talk

is a required part of this course and consists of 4% of your grade. Beyond this talk, you may attend any 3

of the remaining talks that are scheduled for this semester.

Proof of attendance: To submit proof that you have attended the talk, take a picture of an interesting

slide in the speaker’s talk (DO NOT DISTURB THE SPEAKER WHEN DOING THIS). You will be able to upload

the picture to Canvas. Each student is expected to take and upload a picture themselves – any re-use of

pictures amongst students is prohibited and will be reported as an instance of cheating to the Dean’s

office.

Note: Even though the talk is available on zoom, you must attend the four talks in-person. Zoom

attendance will not be credited, as we don’t track zoom attendances in any way.

Can’t attend the visiting scholar presentations due to other commitments?

Talk to the instructor and then sign up to present a second topic in the class. The second presentation’s

score will be used in place of attending the visiting scholar talks.

8. Project Selection
The goal for the course project is to first develop or build upon existing security hardening techniques,

next, modify existing applications to use the security technique, and finally evaluate their impact on

security and performance. The modifications will need to be evaluated on large popular applications

such as browsers, the Linux kernel, frameworks like tensor flow etc.

The projects should be done in groups of up to 3. Groups are expected to clearly document what

contributions each member of the team has made to the project.

You are welcome to develop your own project ideas in systems security and discuss this with me.

Alternately, you can build on or implement one of the existing project ideas listed in this document

under Project ideas and additional ideas I will share in class.

Project group and topics selection should be complete by Feb 10th, although you are welcome to select

your project earlier as well. A one paragraph writeup is due in Canvas describing your project (this is not

graded). If you choose to develop your own project ideas, you must get my approval before using this as

your class project. You are welcome to ask me about possible projects at any time in the course.

You are encouraged to be ambitious and try a challenging project that you think would be fun. Students

who completely execute an easy project will score the same as students who have partial success on an

ambitious project.

9. Class project midterm writeup
Project groups are expected to provide a two-page single-spaced writeup on the progress of their project

on Mar 26th via Canvas.

10. Class project final writeup, presentation, and quality score
Project groups are expected to provide a five-page single-spaced writeup on their project on Apr 27th via

Canvas as well as a 15-minute presentation in class of their project on Apr 21st or Apr 23rd. The exact day

of the presentation will be decided in class. Additionally, students will receive a score based on project

quality – a score assigned based on effort, success, ambition, and clarity of the project.

11. Project ideas
Here are a few project ideas that you are welcome to use as this course’s project. You are also welcome

to develop your own project ideas in systems security and discuss this with me. If you choose to develop

your own project ideas, you must get my approval to use your idea as this course project.

• Use RLBox to sandbox a library in a major application or framework. To sandbox the library,

configure RLBox and modify the build scripts to use a WebAssembly sandbox. Compare the

performance of this with that of a Native Client sandbox. A tutorial to use RLBox is available here

https://rlbox.dev/. Some examples of libraries that have been sandboxed in the past (please find

new examples for this project):

o Sandboxing libjpeg in the TensorFlow framework

o Sandboxing libjpeg (or any file format parsing library) in ClamAV

o Sandboxing markdown-to-html libraries in the Apache web server or in standalone apps

Pre-reading: RLBox: Retrofitting Fine Grain Isolation in the Firefox Renderer

Skills: Comfortable with C++. Experience using Makefiles will help but is not necessary.

Level of difficulty: Easy/Moderate.

• Speedup Chrome’s compressed pointer heap to use memory accesses based on Intel x86

segmentation. Similar to Native Client or WebAssembly, Chrome uses a contiguous heap for

JavaScript code, as you will read about in class. Chrome accesses these contiguous memories

using the usual load/store instructions. However, prior research shows that Intel x86 allows a

more optimized way to access contiguous memories. This low-level optimization leverages

instructions that are part of Intel x86 segmentation – instructions optimized to access contiguous

memories. Modify Chrome’s access of the contiguous JavaScript heap from using standard x86

load/store instructions to instructions that can use segmentation instructions. This requires two

https://rlbox.dev/
https://sunny.garden/@blinkygal/110927958423301359
https://arxiv.org/abs/2003.00572
https://plas2022.github.io/files/pdf/SegueColorGuard.pdf

changes --- changes in Chrome’s C++ code and changes in Chrome’s JITtedcode. For Chrome’s

C++ code, clang provides annotations in C/C++ that can be used to modify code to leverage

segmentation instructions. For Chrome’s JIT code, you can modify Chrome’s JIT compiler directly

to use segmentation instructions. Modify Chrome to implement this optimization and measure

the performance difference.

Pre-reading: Segue & ColorGuard: Optimizing SFI Performance and Scalability on Modern x86

Skills: Comfortable with C++ and clang. Experience working with Chrome will help but is not

necessary.

Level of difficulty: Moderate/Hard.

• Implement a version of RLBox’s tainted type in Rust. As you will read in the class, the RLBox

framework provides “tainted” types to safely handle untrusted data coming from a particular

sandbox’s heap. When using a tainted integer, RLBox allows arithmetic on the tainted integer but

does not allow the tainted integer to be used in place of a regular integer. When dereferencing a

tainted pointer, RLBox automatically checks that the pointer being dereferenced is within the

sandbox’s heap. Recreate this behavior in Rust using the following setup. Use a Rust “Vec<u8>”

to represent the sandbox heap. Then provide APIs to access this Rust Vec<u8> that return data

wrapped in a new tainted type that you create in Rust. This tainted type must ensure that the

tainted data being returned cannot accidentally be misused but continue to allow simple safe

operations like arithmetic on a tainted int.

Pre-reading: RLBox: Retrofitting Fine Grain Isolation in the Firefox Renderer

Skills: Comfortable with Rust.

Level of difficulty: Moderate/Hard.

• Develop a scheme that compiler backends can follow to ensure the emitted instructions would

simply abort in the presence of a 1-bit flip in any one of instructions. Compilers today emit

assembly that when modified by Rowhammer can be used to bypass security checks. For

example, assume that we have a load instruction “lw a1, 0(a2)”. a1 and a2 are registers. This

instruction loads from the memory location a2 and stores the loaded value in register a1.

Assuming with Rowhammer, you could flip a single bit in this instruction which causes the

instruction to be parsed differently. The instruction could now become “lw a1, 0(a4)” or “lw a1,

0(a8)”. Then a simple encoding scheme that keeps this safe would be to emit “lw a1, 0(a2)” only

after setting registers a4 and a8 to zero. This is because execution of “lw a1, 0(a4)” or “lw a1,

0(a8)” would fault as it in-effect dereferences a null pointer. You can modify the tiny C compiler

to use this new encoding scheme. This project can target the RISC-V or ARM instruction

encoding.

Pre-reading: Exploiting the DRAM rowhammer bug to gain kernel privileges

Skills: Comfortable with RISC-V or ARM. Familiarity with the tiny C compiler would help as well.

Level of difficulty: Moderate/Hard.

• Implement HFI in QEMU. HFI is an instruction set extension designed for CPUs so they can allow

applications to isolate components. The implementation can be in x86, ARM or RISC-V.

Pre-reading: Going Beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process

Isolation with HFI

Skills: Comfortable with the chosen CPU architecture. Familiarity with QEMU would help as

well.

Level of difficulty: Easy.

https://plas2022.github.io/files/pdf/SegueColorGuard.pdf
https://arxiv.org/abs/2003.00572
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/narayan:2023:hfi.pdf

• Sandboxing runtimes isolate components of an application to a subset of the address space by

applying bounds checks on all memory accesses. Construct a sandboxing runtime that isolates

the components of an application by modifying the page tables entries of an application

dynamically. Concretely, these page table modifications will ensure that a component is isolated

by restricting all page entries to only point to a fixed range of the virtual address space. For

example, component 1 may be restricted to the space 8GB to 16GB while component 2 is

restricted from 16GB to 32GB etc. Modifying the page entries of an application can be

performed using libraries like PTEditor. One subtle point to note here is that for correct

functionality, you must ensure each component has its own allocator and each allocator only

allocates memory within the permitted space. You can do this either by using a custom allocator

that you modify like dlmalloc, or you can do this by building on an existing sandboxing tool which

already provides a runtime for this --- for instance wasm2c or LFI. If you do build on an existing

runtime, you can disable any bounds checks these tools add.

Pre-reading: Lightweight Fault Isolation: Practical, Efficient, and Secure Software Sandboxing

Skills: Comfortable with C/C++ and the linux kernel. Familiarity with sandboxing will also help.

Level of difficulty: Moderate

• Reproduce the results of Arabica, a tool that isolates native libraries accessed by Java programs

through the JNI interface.

Pre-reading: Arabica: JVM-Portable Sandboxing of Java’s Native Libraries

Skills: Comfortable with Java and C++. Familiarity with JVM implementation would also help

Level of difficulty: Moderate/Hard

• RLBox is a sandboxing framework that allows applications to sandbox libraries with

WebAssembly (wasm) which isolates the effects of the library from the application. Modify the

RLBox sandboxing framework to concurrently execute each function call in a separate process as

well. You can then use this mechanism to figure out if sandboxing with Wasm is faster or slower

than sandboxing with processes for each function call to the sandboxed library. Modify RLBox to

dynamically choose between the two options depending on which approach is faster for each

function call. Compare the performance to stock RLBox.

Pre-reading: RLBox: Retrofitting Fine Grain Isolation in the Firefox Renderer

Skills: Comfortable with C++.

Level of difficulty: Easy/Moderate

If you’re still having difficulties picking a project, please talk to the instructor to brainstorm.

12. Policy on Academic Accommodations
The university is committed to creating an accessible and inclusive learning environment consistent with

university policy and federal and state law. Please let me know if you experience any barriers to learning

so I can work with you to ensure you have equal opportunity to participate fully in this course. If you are

a student with a disability, or think you may have a disability, and need accommodation please contact

Disability and Access (D&A). Please refer to D&A’s website for contact and more information:

http://diversity.utexas.edu/disability/. If you are already registered with D&A , please deliver your

Accommodation Letter to me as early as possible in the semester so we can discuss your approved

accommodation and needs in this course.

https://github.com/misc0110/PTEditor
https://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/WebAssembly/wabt
https://dl.acm.org/doi/pdf/10.1145/3620665.3640408
https://dl.acm.org/doi/pdf/10.1145/3620665.3640408
https://www.researchgate.net/profile/Gang-Tan/publication/267685424_JVM-Portable_Sandboxing_of_Java's_Native_Libraries/links/54ea51590cf25ba91c82e8bb/JVM-Portable-Sandboxing-of-Javas-Native-Libraries.pdf
https://www.researchgate.net/profile/Gang-Tan/publication/267685424_JVM-Portable_Sandboxing_of_Java's_Native_Libraries/links/54ea51590cf25ba91c82e8bb/JVM-Portable-Sandboxing-of-Javas-Native-Libraries.pdf
https://arxiv.org/abs/2003.00572
http://diversity.utexas.edu/disability/

13. Academic Integrity
Recall the Student Honor Code: “As a student of The University of Texas at Austin, I shall abide by the

core values of the University and uphold academic integrity.”

Students who violate University rules on academic dishonesty are subject to disciplinary penalties,

including the possibility of failure in the course and/or dismissal from the University. Since such

dishonesty harms the individual, all students, and the integrity of the University, policies on academic

dishonesty will be strictly enforced. For further information, please visit the Student Conduct and

Academic Integrity Website.

To detect instances of academic integrity violations in programming assignments we may use 3rd party

software.

14. Artificial intelligence
The use of artificial intelligence tools (such as ChatGPT) are allowed, except for the in-class quizzes.

However, it is your responsibility to validate any information you receive from them. This applies to all

content in the presentations. Any errors due to AI tools will be graded as if they are your errors.

15. Religious holy days
Religion (or lack thereof) is an important part of who we are. If a holy day observed by your religion falls

during the semester and you require accommodation due to that, please let me know as soon as

possible. Email is an acceptable form of communication. To guarantee accommodation around

presentations or other big deadlines, I will need notice of at least two weeks. If you are unable (or

forget!) to provide that notice, please contact me anyway in case I can still accommodate you.

University-required language: A student who is absent from an examination or cannot meet an

assignment deadline due to the observance of a religious holy day may take the exam on an alternate

day or submit the assignment up to 24 hours late without penalty, ONLY if proper notice of the planned

absence has been given. Notice must be given at least 14 days prior to the classes which will be missed.

For religious holy days that fall within the first two weeks of the semester, notice should be given on the

first day of the semester. Notice must be personally delivered to the instructor and signed and dated by

the instructor, or sent certified mail. Email notification will be accepted if received, but a student

submitting email notification must receive email confirmation from the instructor.

16. Class Recordings
While there are no plans to record this class, this may change, and classes may be recorded. Class

recordings, if provided, are reserved only for students in this class for educational purposes and are

protected under FERPA. The recordings should not be shared outside the class in any form. Violation of

this restriction by a student could lead to Student Misconduct proceedings.

17. Class Calendar

https://deanofstudents.utexas.edu/conduct/
https://deanofstudents.utexas.edu/conduct/

Date Theme Class contents Presenters

Tue,
Jan 13

No class today

Thu,
Jan 15

Introduction Introduction, syllabus etc.

How to read a paper S. Keshav (2007)

Paper discussion assignments

Memory safety:
- Chapter 1 from How Memory Safety Violations Enable

Exploitation of Programs - M. Payer (2018)
- Sections 30.1 and 30.2 Low-Level Software Security by

Example - Úlfar Erlingsson, Yves Younan, and Frank
Piessens (2010)

On giving talks: (An Opinionated Talk) On Preparing Good
Talks – Ranjit Jhala (2018)

Instructor

Tue,
Jan 20

Memory safety
attacks

Smashing the Stack for Fun and Profit - Aleph One (1996) –
reformatted in 2017

Beyond Stack Smashing: Recent Advances in Exploiting
Buffer Overruns - Pincus, Baker (2004)

<Student
sign up 1>

<Student
sign up 2>

Thu,
Jan 22

Exploiting Format String Vulnerabilities – scut (2001)

Basic Integer Overflows – blexim (2002)
Understanding Integer Overflow in C/C++ - Will Dietz, Peng
Li, John Regehr, Vikram Adve (2015)

<Student
sign up 1>

<Student
sign up 2>

Tue,
Jan 27

Memory safety
defenses

SoftBound: Highly compatible and complete spatial
memory safety for C - Santosh Nagarakatte, Jianzhou Zhao,
Milo M. K. Martin, Steve Zdancewic (2009)

CETS: compiler enforced temporal safety for C - Santosh
Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, Steve
Zdancewic (2010)

Updated writeup (2024): Full Spatial and Temporal
Memory Safety for C - Santosh Nagarakatte (2024)

<Student
sign up 1>

<Student
sign up 2>

Thu,
Jan 29

AddressSanitizer: A Fast Address Sanity Checker -
Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, Dmitry Vyukov (2012)

<Student
sign up 1>

<Student
sign up 2>

http://svr-sk818-web.cl.cam.ac.uk/keshav/papers/07/paper-reading.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/payer:how.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring20/papers/payer:how.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring22/papers/erlingsson:low.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring22/papers/erlingsson:low.pdf
https://www.youtube.com/watch?v=ZLXtAJPk5r0
https://www.youtube.com/watch?v=ZLXtAJPk5r0
https://avicoder.me/papers/pdf/smashthestack.pdf
https://people.eecs.berkeley.edu/~daw/teaching/cs261-f09/reading/beyondsmashing.pdf
https://people.eecs.berkeley.edu/~daw/teaching/cs261-f09/reading/beyondsmashing.pdf
https://cs155.stanford.edu/papers/formatstring-1.2.pdf
https://phrack.org/issues/60/10#article
https://dl.acm.org/doi/pdf/10.1145/2743019
http://www.cs.tufts.edu/comp/150BUGS/softbound-2009.pdf
http://www.cs.tufts.edu/comp/150BUGS/softbound-2009.pdf
https://repository.upenn.edu/bitstreams/87bf3a0b-349e-41fa-962a-bc18ce729ee8/download
https://people.cs.rutgers.edu/~santosh.nagarakatte/papers/safety-sp-2024.pdf
https://people.cs.rutgers.edu/~santosh.nagarakatte/papers/safety-sp-2024.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf

MemorySanitizer: fast detector of uninitialized memory
use in C++ - Evgeniy Stepanov, Konstantin Serebryany
(2015)

UndefinedBehaviorSanitizer - Clang 22.0.0 git
documentation

ThreadSanitizer – data race detection in practice -
Konstantin Serebryany, Timur Iskhodzhanov (2009)

Tue,
Feb 03

Control-flow
attacks and
defenses

The advanced return-into-libc exploits - Nergal (2001)

Return-Oriented Programming: Systems, Languages, and
Applications - R. Roemer, E. Buchanan, H. Shacham and S.
Savage (2012)

<Student
sign up 1>

<Student
sign up 2>

Thu,
Feb 05

(Skip sections 5 and 6) Control-Flow Integrity: Principles,
Implementations, and Applications - M. Abadi, M. Budiu,
Úlfar Erlingsson, and J. Ligatti (2009)

Security Analysis of Processor Instruction Set Architecture
for Enforcing Control-Flow Integrity - Vedvyas
Shanbhogue, Deepak Gupta, Ravi Sahita (2019)

Control-Flow Bending: On the Effectiveness of Control-
Flow Integrity - Nicolas Carlini, Antonio Barresi, Mathias
Payer, David Wagner, Thomas R. Gross (2015)

Instructor

Tue,
Feb 10

Memory safety
attacks

Note: Project selection deadline. Ungraded short writeup
due.

Hacking blind - Andrea Bittau, Adam Belay, Ali
Mashtizadeh, David Mazieres, Dan Boneh (2014)

<Student
sign up 1>

<Student
sign up 2>

Thu,
Feb 12

 TBD: Analysis of a real attack <Student
sign up 1>

<Student
sign up 2>

Tue,
Feb 17

Bug finding Mandatory visiting scholar presentation attendance – Feb
17th, 11am, GDC 2.216

KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs - Cristian
Cadar, Daniel Dunbar, Dawson Engler (2008)

<Student
sign up 1>

<Student
sign up 2>

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43308.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43308.pdf
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://dl.acm.org/doi/pdf/10.1145/1791194.1791203
http://www.phrack.org/issues/58/4.html#article
https://www.cs.utexas.edu/~hovav/dist/rop.pdf
https://www.cs.utexas.edu/~hovav/dist/rop.pdf
https://www.cse.usf.edu/~ligatti/papers/cfi-tissec.pdf
https://www.cse.usf.edu/~ligatti/papers/cfi-tissec.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring21/papers/shanbhogue:cet.pdf
https://cseweb.ucsd.edu/~dstefan/cse227-spring21/papers/shanbhogue:cet.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=05c49820bb35d0b8d7a2168a9124e506a0334b57
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/cadar/cadar.pdf
https://www.usenix.org/legacy/event/osdi08/tech/full_papers/cadar/cadar.pdf

Sys: A {Static/Symbolic} Tool for Finding Good Bugs in
Good (Browser) Code - Fraser Brown, Deian Stefan,
Dawson Engler (2020)

Thu,
Feb 19

 AFL fuzzer
- Design
- Docs
- Follow up: AFL++: Combining Incremental Steps of

Fuzzing Research - Andrea Fioraldi, Dominik Maier,
Heiko Eißfeldt, Marc Heuse (2020)

Evaluating fuzz testing - George Klees, Andrew Ruef, Benji
Cooper, Shiyi Wei, Michael Hicks (2018)

<Student
sign up 1>

<Student
sign up 2>

Tue,
Feb 24

Sandboxing Evaluating SFI for a CISC Architecture - Stephen
McCamant, Greg Morrisett (2006)

Bringing the web up to speed with WebAssembly -
Andreas Haas, Andreas Rossberg, Derek L. Schuf, Ben L.
Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, JF Bastien (2017)

<Student
sign up 1>

<Student
sign up 2>

Thu,
Feb 26

 RLBox: Retrofitting Fine Grain Isolation in the Firefox
Renderer - Shravan Narayan, Craig Disselkoen, Tal
Garfinkel, Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, Deian Stefan (2020)

Instructor

Tue,
Mar
03

Secure Browser
architecture

The Security Architecture of the Chromium Browser -
Adam Barth, Collin Jackson, Charles Reis, Google Chrome
Team (2008)

Site isolation: Process separation for web sites within the
browser - Charles Reis, Alexander Moshchuk, and Nasko
Oskov (2019)

<Student
sign up 1>

<Student
sign up 2>

Thu,
Mar
05

JIT Security The Art of Exploitation: Attacking JavaScript Engines - saelo
(2016)

<Student
sign up 1>

<Student
sign up 2>

Tue,
Mar
10

The Art of Exploitation: Compile Your Own Type Confusion:
Exploiting Logic Bugs in JavaScript JIT Engines - saelo
(2019)

<Student
sign up 1>

<Student
sign up 2>

https://www.usenix.org/system/files/sec20-brown.pdf
https://www.usenix.org/system/files/sec20-brown.pdf
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://afl-1.readthedocs.io/en/latest/index.html
https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf
https://www.usenix.org/system/files/woot20-paper-fioraldi.pdf
https://dl.acm.org/doi/pdf/10.1145/3243734.3243804
https://www.usenix.org/legacy/event/sec06/tech/mccamant/mccamant.pdf
https://dl.acm.org/doi/pdf/10.1145/3062341.3062363
https://arxiv.org/abs/2003.00572
https://arxiv.org/abs/2003.00572
http://css.csail.mit.edu/6.858/2018/readings/chromium.pdf
https://www.usenix.org/system/files/sec19-reis.pdf
https://www.usenix.org/system/files/sec19-reis.pdf
https://phrack.org/issues/70/3#article
https://phrack.org/issues/70/9#article
https://phrack.org/issues/70/9#article

Thu,
Mar
12

Fuzzilli: Fuzzing for JavaScript JIT Compiler Vulnerabilities -
Samuel Groß, Simon Koch, Lukas Bernhard, Thorsten Holz,
Martin Johns (2023)

Cover some example bugs uncovered by Fuzzilli. This link
also has extra resources for Fuzzilli.

<Student
sign up 1>

<Student
sign up 2>

Tue,
Mar
17

Spring break, no class

Thu,
Mar
19

Spring break, no class

Tue,
Mar
24

Side-channel
attacks

Introduction and background

Side-channels: Sections 1 to 4 from
Transient-Execution Attacks: A Computer Architect
Perspective – Luís Fiolhais, Leonel Sousa (2023)

Instructor

Thu,
Mar
26

 Spectre attacks: Exploiting speculative execution - Paul
Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, Michael Schwarz, Yuval Yarom
(2018)

For the below paper. Skip section 4.2 to 4.8
A Systematic Evaluation of Transient Execution Attacks and
Defenses - Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank
Piessens, Dmitry Evtyushkin, Daniel Gruss (2019)

Instructor

Tue,
Mar
31

Exploiting the DRAM rowhammer bug to gain kernel
privileges - Mark Seaborn with contributions by Thomas
Dullien (2015)

<Student
sign up 1>

<Student
sign up 2>

Thu,
Apr 02

Hardware-
security

SoK: Hardware-supported Trusted Execution Environments
- Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde,
Srdjan Capkun, Ronald Perez (2022)

<Student
sign up 1>

<Student
sign up 2>

Tue,
Apr 07

Memory Tagging: A Memory Efficient Design – Aditi
Partap, Dan Boneh (2022)

Instructor

https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_f290_paper.pdf
https://github.com/googleprojectzero/fuzzilli?tab=readme-ov-file
https://dl.acm.org/doi/pdf/10.1145/3603619
https://dl.acm.org/doi/pdf/10.1145/3603619
https://dl.acm.org/doi/pdf/10.1145/3399742
https://www.usenix.org/system/files/sec19-canella.pdf
https://www.usenix.org/system/files/sec19-canella.pdf
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://arxiv.org/pdf/2205.12742
https://arxiv.org/pdf/2209.00307

ARM MTE Performance in Practice (link coming) – Taehyun
Noh, Yingchen Wang, Tal Garfinkel, Mahesh Madhav,
Daniel Moghimi, Mattan Erez, Shravan Narayan (2026)

Thu,
Apr 09

Web Security Tor: The Second-Generation Onion Router - Roger
Dingledine, Nick Mathewson, Paul Syverson (2004)

Top changes in Tor since the 2004 design paper (Part 1) –
Nick Mathewson (2012)
Top changes in Tor since the 2004 design paper (Part 2) –
Nick Mathewson (2012)
Top changes in Tor since the 2004 design paper (Part 3) –
Steven Murdoch (2012)

<Student
sign up 1>

<Student
sign up 2>

Tue,
Apr 14

TBD – CSRF etc

Thu,
Apr 16

Buffer class. Maybe filled with another paper.

Tue,
Apr 21

Final presentation for projects, part 1

Thu,
Apr 23

Final presentation for projects, part 2

https://css.csail.mit.edu/6.5660/2024/readings/tor-design.pdf
https://blog.torproject.org/top-changes-tor-2004-design-paper-part-1/
https://blog.torproject.org/top-changes-tor-2004-design-paper-part-2/
https://blog.torproject.org/top-changes-tor-2004-design-paper-part-3/

