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1 Purpose

Hardware-assisted fault isolation (HFI) is a hardware extension that supports in-process isolation (sandbox-
ing) of unmodified native binary code and and also integrates into existing software based fault isolation
(SFI [9]) based sandboxing systems, systems such as WebAssembly [2] and Google’s Ubercage (Google
Chrome’s v8 JIT sandbox [8]), to improve their performance, security, and scalability [5].

HFI aims to provide all the capabilities needed for secure sandboxing namely data and control flow
isolation as well as complete and efficient mediation of privileged instructions (i.e. system calls). This
specification describes the functional properties of HFI on RISC-V, a more complete description of the
background and motivation for HFI is presented in a paper published at ASPLOS 2023 [5].

2 Overview

HFI mode. HFI adds a new processor mode (HFI mode). If HFI is enabled, code running on a hart
is “sandboxed”, i.e, execution is restricted according to: (a) a set of region registers, that grant access to
memory (see §6), (b) a register with the sandbox exit handler, where system calls and sandbox exits are
redirected to (see §4), and (c) a register with sandbox option flags that modify sandbox semantics (see §3).
HFI’s mode and region registers operate on a per-hart basis; they are not synchronized across harts.

For convenience, we refer to the code using HFI to sandbox other code as the sandboxing runtime. With
a few exceptions (§7.2), HFI is enabled when a sandboxing runtime executes an hfi enter instruction,
and disabled when sandboxed code executes an hfi exit instruction, which transfers control back to the
sandboxing runtime. The runtime is responsible for saving and restoring context appropriately, and can
use HFI to multiplex many sandboxes across harts, scheduling them as it sees fit. HFI enables sandboxing
through two mechanisms:

Interposition. HFI supports interposition on all paths out of the sandbox including when a sandbox exits
(through the hfi exit instruction), system calls—and by extension, signals. Thus, a runtime can use HFI
to mediate all control flow and access to sensitive OS resources.

Regions. HFI offers memory and control isolation using a finite set of regions—portions of a processes’
virtual memory described by base (start address for the region) and bound (size of the region). By default,
an HFI sandbox has no regions defined and thus cannot access memory to either access data or execute code.
To grant access, the sandboxing runtime configures regions of memory allowed by using several dedicated
instructions (e.g. hfi set region size, hfi set region permission). Regions come in three types:

• Implicit data regions: grant read and/or write memory access to a portion of memory, and are applied
to every memory access performed by sandboxed code. For example, if sandboxed code executes an
instruction— load address X into register Y —HFI will ensure that at least one of the implicit regions
has a range that includes X, and then applies the permissions from the first matching region.

• Implicit code regions: are similarly used to grant execute permissions, and applied to every instruction
fetch a sandboxed program executes.
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• Explicit data regions: are used to grant read/write access to sandboxed programs, but only through
dedicated instructions that perform region-relative memory operations. Specifically, loads and stores
to these regions are performed as offsets into the region using new h-prefixed variants the standard
RISC-V memory instructions such as hlw and hsw. The offsets are checked to ensure they remain
within the explicit region.

The new instructions introduced by HFI are shown in Figure 1, while the new control and status registers
as well as internal registers are shown in in Figure 2.

3 Sandbox Setup

The sandboxing runtime can query if the processor supports HFI by checking the supported extension string
from the device tree or the ACPI RISC-V Hart Capabilities Table as is the common practice [3]. Specifically,
the string will list “hfi-version” if HFI is supported. The HFI version described in this spec is “1”.

If HFI is supported, HFI mode is enabled with the hfi enter instruction, and disabled with the hfi exit

instruction. The hfi enter instruction has two variants— the first variant takes a single register operand
which specifies the sandbox configuration options as a bit vector called hfi options t, that has the following
fields:

• lock regions: reg u1 —Regions configurations are normally specified prior to hfi enter, using instruc-
tions such hfi set region size (See Section 6). If lock regions is set to false (0), region manipulation
instructions can also be called while in HFI mode (i.e., the region configuration can be modified in the
sandbox). If true (1), these instructions cannot be called while in HFI mode.

• redirect system calls: reg u1 —HFI sandboxes can interpose on system calls made by sandboxed code.
If redirect system calls is set to false (0), system calls are unaffected by HFI. If true (1), HFI will redirect
system calls (ecall) instructions to the HFI exit handler (which can be set with the hfi set exit handler

instruction discussed in Section 4).

• redirect exits: reg u1 —HFI sandboxes can interpose on invocations of hfi exit so the application can
take control once the sandbox code completes. If redirect exits is set to false (0), hfi exit disables
HFI and execution simply falls through to the next instruction. If true (1), hfi exit disables HFI and
redirects control flow to the exit handler (which can be set with the hfi set exit handler instruction
discussed in Section 4).

• serialize enter exits: reg u1 —HFI sandboxes can add fences sandbox entries and exit (through the
hfi enter and hfi exit instructions), a required step for Spectre protections. If serialize enter exits is
false (0), these instructions do not introduce any serialization or fencing. If true (1), these instructions
act as a fence for all memory operations that are run prior to these instructions.

The second variant of hfi enter operates like hfi enter variant 1 plus a jump instruction; it takes the
hfi options t as the first operand and takes the target of the jump in a register as the second operand.

Behavior. The hfi enter instruction sets the value of an internal status register hfi usermode enabled

to 1 on execution, and clears the hfi access violation CSR indicating that there has not been a violation
of HFI’s region rules since the last invocation of hfi enter. The second variant of hfi enter additionally
sets the PC to the target specified in the second operand after its execution. The hfi exit instruction will
set hfi usermode enabled to 0 on execution, and writes the value of the program counter of the hfi exit

instruction to the hfi exit pc CSR, and sets the hfi exit reason CSR to 1, indicating the sandbox exit
was due to and hfi exit instruction. hfi enter and hfi exit must always act as fence for other HFI
instructions, i.e., they only execute after all in-flight HFI instructions have completed.

Faults. The hfi enter instruction will trap if the CPU is already in HFI mode. The hfi exit instruction
will trap if the CPU is not in HFI mode.

Design Rationale. Most of the options in hfi options t are present to support to different use cases.
When executed unmodified native code, the sandboxed code is totally untrusted, thus regions are locked,
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system calls are redirected, etc. However, when sandboxing code from existing SFI systems such as We-
bAssembly, it is more efficient/not necessary for HFI to do some checks, since these systems already handle
some safety checks in their compiler/runtime. For example, these systems may not want to redirect system
calls. Similarly, the choice of whether or not to serialize hfi exit and hfi enter will depend on the threat
model that a particular application is trying to enforce (i.e. if they want greater Spectre safety), we leave it
to the user to choose whether they wish to opt into this added overhead. Finally, hfi enter is offered in two
variants as some sandboxing runtimes may want the option to jump directly to executing sandboxed code
after sandboxing is enabled via hfi enter, while other runtimes may want the instruction to fall through
to avoid any costs due to extra control flow. The former behavior can difficult to accomplish with the single
operand variant of hfi enter as it requires the instruction following hfi enter to be part of the sandbox’s
code—which may not always be possible. The latter behavior’s performance is difficult to achieve with an
instruction that includes control flow.

4 Configuring the Exit handler

HFI supports interposition via. redirection on all paths out of the sandbox including sandbox exits (via.
hfi exit) and system calls (and by extension signals). As noted, which instructions (system calls and/or
hfi exit) are redirected is configured through hfi options t, that is passed as an operand to hfi enter.

To handle this redirection, an exit handler is setup with the hfi set exit handler instruction. This
instruction should be invoked prior to hfi exit. hfi set exit handler takes one operand, a 64-bit reg-
ister, that holds the address of the exit handler. The current exit handler can be retrieved via. the
hfi get exit handler instruction.

Behavior. The hfi set exit handler instruction sets the hfi exit handler reg CSR to the address
specified in its operand.

• If hfi exit is configured to invoke the exit handler, the hfi exit instruction, when executed by
sandbox code, will jump to the exit handler after execution (during which the hfi exit reason CSR
is set to 1 indicating the exit was due to the hfi exit instruction).

• If system calls are configured to invoke the exit handler, the system call instruction, when executed by
sandbox code, will jump to the exit handler before execution, set the hfi exit reason CSR is set to 2
indicating the exit was due to a system call, and disable sandboxing by setting hfi usermode enabled

CSR to 0.

Faults. The hfi set exit handler instruction will trap if the CPU is already in HFI mode. If the exit
handler is set to a location without code permissions, the behavior of the CPU would be identical to a normal
jump to an address without code permissions.

Design Rationale. Sandboxed code will invoke hfi exit to exit the sandbox. We must ensure that the
sandboxed code always returns control to the sandboxing runtime after exits, which means, invocation of
hfi exit should return control to trusted code. Thus, we have added support for redirecting all invocations
of hfi exit.

Sandboxed code can also invoke system calls; since HFI’s restrictions don’t apply to kernel code, system
calls could be used to bypass isolation enforced by the hardware [1]. Thus, trusted code needs the ability to
interpose on system calls, so that it can restrict the invocation of unsafe system calls by sandboxed code.
Such interposition on system calls could be done using assembly rewriting or using kernel features such as
EBPF, however, this is slow and cumbersome. To allow efficient interposition of system calls, HFI provides
hardware support to redirect system calls. When enabled, system calls simply act like a jump instruction to
the exit handler.

5 New CSRs and internal registers

HFI stores state for the current sandbox in CSRs and internal registers including: (1) the sandbox status
(2) the exit handler (3) region configuration (4) the cause and status of HFI induced faults (traps). These
are detailed in Figure 2.
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The sandbox status, stored in the hfi status reg CSR, is read-only to userspace software, but writable
by kernel code. The hfi status reg register should support updates via register renaming to support the
performance expectations of hardware sandboxing. These values are expected to change frequently (once
in few thousand instructions), and serializing this register updates with techniques like score-boarding will
hinder practical adoption. The contents of the hfi status reg register are as follows:

• hfi usermode enabled (1-bit): is updated automatically during hfi enter (set to true), hfi exit

(set to false), and when the exit handler is called (set to false).

• hfi exit reason (2-bit): indicates the reason for the last sandbox exit. Exit due to hfi exit would
leave this set to 1. Exit due to a system call with leave this set to 2.

• hfi exit pc (60-bit): indicates the PC of the instruction causing the last exit. The first 2-bits and
the last 2-bits of the PC are dropped and are assumed to be zero. Thus 60-bits of the PC are stored.

The exit handler of the sandbox is stored in the hfi exit handler reg internal register and can be set
or read via the hfi set exit handler and hfi get exit handler instructions. Since the register is not
expected to be frequently updated, it’s updates may be scoreboarded if needed.

Regions are stored in internal registers. Different version of HFI may require different numbers of these
registers, as discussed in §9.2. These registers cannot be directly named, and must instead be modified or
accessed through HFI instructions (e.g. hfi get region size). Updates to these registers should ideally be
supported through register renaming; however, implementations may choose to use the slightly less expensive
scheme: In particular, implementations only need to ensure register updates must not fence/serialize when
performed with hfi usermode enabled register is 0 (i.e., we are not running sandboxed code), and defer
fencing to when an hfi enter instruction executes, which should wait for all pending updates to these reg-
isters to complete. Updates to this register must serialize when performed when the hfi usermode enabled

register is set to 1, which is permitted if the lock regions option of the sandbox is set to 0.
The result of an HFI fault due to an HFI policy violation is stored in the hfi fault status reg register.

This register stores the precise cause of an HFI induced fault (trap). Since the register is not expected to
be frequently updated, it’s updates may be scoreboarded if needed. Information in hfi fault status reg

is readable in user space so the runtime can respond appropriately, and read-write in the kernel so that this
state can be saved/restored as part of the process context, as multiple processes may be using HFI, and fault
delivery is asynchronous. This register has four fields:

• hfi fault occured (1-bit): is a bit that indicates that an hfi fault has occurred.

• hfi fault region (8-bit): indicates which region the fault occured in, if the fault was do to an explicit
region trap (out of bounds or insufficient permissions), it will contain the number of the region that
caused the fault, i.e., the operand to an h-prefixed instruction. If the fault was caused by an implicit
region i.e. insufficient permission to access a matched region,it will contain the number of the region.
If the fault was cause because no implicit region matched an operation, it will contain 0.

• hfi fault op (2-bit): indicates the operation that faulted, this will be a LOAD FAULT or STORE FAULT

for a failed load or store, or FETCH FAULT for a failed instruction fetch.

• hfi fault type (1-bit): indicates the type of fault. If OUT OF BOUNDS, it indicates that an operation
was out of bounds if it was explicit region fault , or that no implicit region matched the operation (in
this case hfi fault region will be equal to zero). If INSUFFICIENT PERMISSIONS, either an explicit
region had insufficient permissions for an access, or whatever implicit region matched the operation
did not have sufficient permissions.

Design Rationale. The hfi enter and hfi exit instructions modify the various bits of the hfi status reg

register. The updates to this register must be fast to allow rapid entries and exits to HFI mode; thus this
must be supported by register renaming. Region registers are updated frequently as well when switching be-
tween different sandboxes. While this would ideally support register renaming for efficient register updates,
an alternate scheme that ensures a single serialization (on entry into the sandbox) for a batch of region
updates prior to entry, would provide adequate performance. Finally, updates to the region configuration
within the sandbox should serialize, as an updates during speculative execution may allow Spectre-style
attacks to break out of the sandbox.
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6 Regions

Regions offer a limited version of the functionality found in traditional segmented memory systems, that
control access using <base, bound, permission> tuples to control access to contiguous ranges of memory.

By default, a processor in HFI mode has no access to memory i.e. it cannot read data or run code.
To enable sandboxed code to run, a sandbox runtime must explicitly configure regions prior executing
hfi enter. In the next sections, we provide a brief overview of the three types of HFI regions, and then
specify how to configure these regions.

6.1 Regions Types

HFI offers three region types implicit code, implicit data, and explicit data. Each type is specialized to
particular tasks, with the aim of reducing hardware complexity.

Implicit Data and Implicit Code Regions Implicit regions are essential for isolating memory accesses
and control flow of unmodified native code, as well as other situations where explicit regions (described
next) would be impossible to use. HFI discriminates implicit regions into code and data regions, to keep the
control and data pipelines simpler and more efficient. Data regions can grant read and write access and only
apply to loads and stores, while code regions apply only to instruction fetches, and can only grant execute
permissions.

Implicit data region checks apply to every memory access, and grant access on a first-match basis. For
example, if sandboxed code executes an “lw rd, rs(offset)” instruction, HFI will check if the address in
rs + offset is in range in any of the implicit regions in parallel. For the first matching implicit region, it
will check the permissions to see if reads are allow–if so, it will proceed. If the permission check fails, or if
there is no match, HFI will trap. Implicit code regions apply similar checks to code.

Implicit regions perform bounds checks based on prefix matching. Concretely, each region specifies a
base prefix (the region’s base address) and an lsb mask. To check if an address is in bounds, HFI uses the
lsb mask to remove the least significant bits of the address, and compares the remaining prefix to base prefix.
Implicit regions thus must be power of two sized and aligned—thus, they trade granularity for efficient
checking—in particular, checks can be implemented with simple masking operations. Implicit regions checks
are not applied to operations on explicit regions, which we discuss next.

Explicit regions. Explicit regions provide region relative addressing, i.e., addressing is always relative to
the base of the currently active region (by default, explicit data region 1). This offers efficient fine grain
control over access to memory within a particular sandbox address or shared buffer. HFI provides two
different region sizes (large/small), with different granularities. Large regions can address up to 256 TiB
(248) and are sized and aligned to multiples of 64K (216). Small regions, in contrast, can only address up to
4GiB (232), but are byte granular in size and alignment.

To access memory through explicit regions, a program must use the h-prefixed variants of normal load
and store instructions (hlw, hsw, hlh, etc.). These instruction target the active region, but can be changed
to use a different region as described in §9.2). For example, hlw x1, A(x0) will succeed if the address being
loaded is falls within explicit region 1, and there is a read permission set on that region, otherwise it will
fail.

A few notes on size and alignment. Unaligned memory operations that are split by the micro-
architecture into independent operations will be checked independently by HFI. If one split faults, the
original fused instruction will fault, as will the split instruction that violates HFI bounds. However, the split
operation that is within bounds may is allowed to have visible micro-architectural side effects within the
sandbox.

To safely implement explicit bounds checks, the bounds check must be applied to the operand of an
operation (i.e., the address being loaded/stored to) plus the size of the operand, to ensure that longer
operations do not exceed bounds checks.

Regions also have minimum sizes. The smallest large explicit region is 64K, there is no minimum size on
small explicit regions. The smallest implicit region is 64 bytes. The behavior of regions that do not meet
these minimums is undefined.
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Design Rationale. The large and small region sizes and alignment constraints on explicit regions allow
us to implement explicit regions with a single 32-bit comparator. For small regions, HFI checks the least-
significant 32-bits is within bounds, and ensures the top bits are zero. For large regions, HFI will drop the
first 16-bits, and compare bits 16-48, while checking the top bits are zero.

While allowing regions that support arbitrary address ranges at with any size and alignment is conceptu-
ally simpler than specialized large and small regions, our restrictions allow bounds checking with very simple
hardware. HFI’s large and small regions constraints can be checked with a single 32-bit comparator, rather
than the more costly multiple 64-bit comparators needed to check arbitrary region bounds.

Explicit regions’ added granularity is critical for supporting Wasm heaps, which grow in 64K incre-
ments [2]—while byte granularity is critical for efficiently sharing individual memory objects and sandboxing
legacy code, as existing buffers can be shared in-place changing code or allocators.

6.2 Manipulating Regions

Region state, which is stored in internal registers, can only read or modified HFI instructions. The instruc-
tions broadly operate on regions by a region number(region number t)—a unique number/index assigned
to each HFI region on the CPU.

Region number assignments. The version of HFI defined in this spec (hfi1), defines three regions: one
explicit data region with a region number t of 1, one implicit data region of region number t of 2, and
one implicit data region of region number t of 3. Future versions may define multiple regions of each type
(§9.2), and each region will be assigned a unique region number t.

We now discuss the instructions that can configure these regions:

Setting Region base and size. The following instruction are used to specify the range of memory a region
applies to.

hfi set region size (region number t, reg u64 base, reg u64 mask or bound)

hfi get region size (region number t) -> (reg u64 base, reg u64 mask or bound)

Behaviour. Region sizes and locations are set using the hfi set region size. Regions are typically setup
prior to entering the sandbox (with hfi enter). If this instruction runs in a sandbox, i.e., hfi usermode enabled

is 1—which is allowed when lock regions is 0—it must act as a memory fence. All prior memory instruc-
tions must complete before executing this instruction and subsequent memory operations should be issued
only after the update.

hfi set region size has region number t as it’s first operand register, the base of the region as it’s
second operand register, and the third operand depends on the type of region. If the region is an explicit
data region, the third operand should contain the bound/size of the region; if the region is an implicit
data or code region, the third operand should contain the mask for the region. The value of the base and
bound/mask should additionally conform to the per-region size and alignment requirements in Section 6.1,
however, the instruction does not check that operands meet this criteria. If the operands don’t meet the
criteria, the resulting behavior is undefined.

hfi get region size returns region size information. It takes region number t as it’s first register
operand, and returns the base and mask/bound in two output registers.

Faults. These instructions fault if the region number specified does not exist (i.e., it is greater than the
total number of regions). For efficiency, these instructions should not check whether region locations or sizes
are invalid (e.g., the program has specifies an implicit region base that is not aligned to its size); rather the
hardware will continue to operate using the provided base and size, although this behavior is to be considered
undefined.

Design Rationale. When hfi set region size is run prior to hfi enter, it doesn’t need to act as a fence
as hfi enter can fulfill this purpose. However, when used inside the sandbox, hfi set region size must
act as a fence, as otherwise inflight memory operations could potentially access memory outside the sandbox
when they were issued if a region resized.

Setting Permissions, Enabling/Disabling Regions. The following instructions are used to configure
permissions on regions, as well as to enable and disable regions.
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hfi set region permission (permission set t, permission t)

hfi get region permission (permission set t) -> permission t

Behaviour. Region permissions are set using the hfi set region permission instruction. This instruction
sets the permissions of all regions using a single bit vector. The instruction takes permission set t as the
first argument. This is a 32-bit register which must have the value 0; other values are reserved for future
use. The second operand to this instruction is a permission bit-vector permission t encoded as follows:

• Bits 0 to 3 are permissions for explicit data region 1. Bit 0 indicates if the region is enabled (i.e., should
be enforced by the sandbox). Bit 1 and 2 indicates whether the region has read and write permissions
respectively. Bit 3 indicates if the explicit data region is a large region (i.e., a region with a bound
greater than 4GB as explained in Section 6.1.

• Bits 4 to 6 are permissions for implicit data region 1. Bit 4 indicates if the region is enabled. Bit 5
and 6 indicates whether the region has read and write permissions respectively.

• Bits 7 to 8 are permissions for implicit code region 1. Bit 7 indicates if the region is enabled. Bit 8
indicates whether the region has execute permissions.

Faults. This instruction will fault if the permission set t is not set to 0, or if hfi usermode enabled

and lock regions is set to 1 (when hfi mode is on with region configurations locked). Any unused bits of
permission t are ignored; thus setting an unused bit will not fault.

Design Rationale. An alternate design for this instruction would be to split up hfi set region permission

to operate per-region (by changing the instruction to take region number t to operate on as the first pa-
rameter). However, this would lead to additional overheads in practice. This is because this instruction is
primarily used when switching between active sandboxes. In this case, the permissions of all regions would
likely need adjusting. If hfi set region permission operated per region, then three calls to this instruction
would be needed to adjust the permissions of the three regions. In contrast, our design allows this to occur
in a single instruction. Additionally, the permission set t parameter further future-proofs this design by
allowing us to modify the format of this instruction for future versions of HFI, without breaking backward
compatibility.

Clearing Regions.. To clear region state rapidly e.g. on context switches, HFI offers hfi reset regions.

Behaviour. This instruction sets the base and bound/mask of all regions to zero (equivalent to calling
hfi set region size with arguments of 0 on all regions), disables all regions and sets their permissions
to zero (equivalent to calling hfi set region permission with a permission vector of 0). It also sets the
active explicit data region to 1 (this will matter only in future HFI versions which have multiple explicit
data regions).

Faults. This instruction faults if hfi usermode enabled and lock regions is set to 1 (when hfi mode is
on with region configurations locked).

Design Rationale. While this instruction can effectively be achieved using combinations of other instruc-
tions, unifying this “reset” operation into a single instruction allows optimizing a number of paths. For
example, when an application needs to switch between multiple sandboxes, software has to clear the state
of the first sandbox before applying the state of the second sandbox. This allows optimizing the first step
sequence. This operation is also useful when the OS kernel is switching between two scheduled processes
both of which may use HFI. The OS kernel is responsible for saving and restoring each processes’ HFI state,
and thus can also use this instruction.

6.3 Implementation Considerations

Implementation Semantics and Spectre To ensure Spectre safety, the following guidance is offered for
implementer.

For code regions: To ensure security, prefix-checking should be carried out in parallel with the decode
stage. If the check finds a matching region with execute permissions, it succeeds, and decode carries on
normally. If the check fails, it prevents the decoded micro-ops from entering the pipeline, and instead
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translates all instructions into a faulting NOP micro-op. This ensures that instructions that are out-of-
bounds are not executed during committed execution, and are also not executed speculatively.

For data regions: Bounds checking, DTLB lookup, and cache index lookups should happen in parallel.
One concern here is that, cache state could be modified as a result of secret (out-of-bounds) data. To prevent
this sort of side-channel attack all bounds must checks occur before the processor resolves the physical address
of a memory access. This is secure because the processor can update cache metadata like the LRU bits (for
hits) or fetch new data blocks (for misses) only after resolving the physical address. HFI can therefore strictly
prevent any metadata updates if there has been a fault.

Note that out-of-bounds address can affect metadata of the DTLB or i-cache—e.g., LRU bits. However,
the invariant we guarantee—no secret (data stored outside the boundaries of the region) ever affects archi-
tectural state— is still not violated, since we do not allow the result of an out-of-bounds memory operation
to propagate into any of these structure.

To summarize, HFI’s data pipeline is Spectre safe, since the data cache is not updated prior to bounds
checks being completed; HFI’s control pipeline is safe as bounds checks finish prior to instruction decode
which is before the execution of instructions. This approach also helps to guarantee that any code executed
as the result of PHT, BTB, and RSB (speculative) predictions are checked prior to execution.

7 Using HFI

Here we explore how HFI’s features are used to create sandboxing runtimes in userspace, and the HFI support
needed from the operating systems.

7.1 Sandboxing in Userspace

Suppose we have a sandbox runtime (e.g. part of an application implementing a Wasm FaaS server, or a
library sandboxing framework [7]), that is ready to create new sandbox. We assume that the runtime has
reserved some memory for the sandbox (i.e., the sandbox memory), has placed the input for the sandboxed
code in a memory buffer, and the sandboxed code itself is separated from other code and mapped in an
isolated contiguous portion of the address space. Our runtime can now take the following steps:

Setting up regions. To start, our runtime sets up access to the code, heap, and input memory so our
application has everything it needs once the sandbox starts, it does this using the hfi set region size,
hfi set region permission instructions to setup and enable regions that grant access to the allocated
heap and inputs, and the application code. If no code regions are mapped, HFI will immediately trap after
hfi enter is called, as the processor will not be able to fetch instructions.

What type of regions the runtime will use, as as how the sandbox is configured will depend on if it is
sandboxing a native or SFI (e.g. Wasm) based application.

Sandboxing Native code. When sandboxing native code, the code being sandboxed is entirely untrusted,
and thus, it cannot be allowed to modify any of HFI’s state, or exit the sandbox in unexpected ways, or
perform any other operation that would allow it to violate the sandbox’s policy. Thus, the sandbox options
flags in hfi options t that are passed to hfi enter to start the sandbox will: set the lock regions flag
to 1 (true), since sandboxed code cannot be trusted to modify regions; set the redirect system calls flag
to 1, as again this code can’t be trusted to perform system calls directly; set the redirect exit flag to
1, ensuring all control flow out of the sandbox is redirect to the trusted runtime. The runtime will use an
implicit data region to permit the sandboxed code to use of the sandbox memory; the runtime will then
ensure the sandboxed code’s stack, heap and inputs are part of this implicit region. An implicit code regions
will be used to mark the code of the sandbox.

Sandboxing using SFI runtimes. When sandboxing code through SFI runtimes such as a Wasm runtime,
sandboxing is handled as a mix of compiler/software-runtime checks as well as hardware checks from HFI.
In the scenario, implementer has confidence in the correctness of the SFI’s runtime and compiler, and thus
their use of HFI is different from sandboxing code, giving it greater flexibility and performance.

For example, on hfi enter it can set the lock regions flag to 0 (false), allowing the compiler/runtime
to modify regions with hfi set region size and hfi set region permission without having to exit the
sandbox. This can allow regions to be used more flexibly, e.g. it can load and spilling registers, and never
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need to exit the sandbox. The redirect system calls flag can also be set to 0 (false), as the Wasm compiler
disallows direct access to system call instructions, ensuring that any system calls made will come from the
trusted runtime, this can eliminate the overhead of unecessary sandbox exits. What the redirect exit flag
will be set to depends on the SFI implementation, it may set this flag to false and opt to let sandbox exit’s
fall through to minimize overhead, since it can ensure that it knows that it can control whatever instruction
follows an hfi exit, or it may opt to set it to true, and setup an exit handler.

For granting access to memory, the runtime will use still use implicit regions for code, however, an
explicit region(s) will be used for the applications heap(s) and inputs, as the SFI compiler can use h-prefixed
instructions for these accessing these directly. This allows it to exploit the greater flexibility of explicit
regions for sizing and alignment that are necessary to support Wasm and similar systems. Notably, a Wasm
runtime in the sandbox may opt to place it’s own data into an implicit data region, to ensure Spectre attacks
cannot be used to trick the sandbox runtime into leaking its own data.

Saving context. A sandboxing runtime must protect its own execution context such as its stack and
contents of CPU registers, before it switches to sandbox code. HFI leaves this mechanism entirely up
to software—this flexibility is important for efficiency. For example, if our runtime is running untrusted
native code— it will have to use springboards and trampolines [10]— lightweight assembly routines that
(1) clear registers and switch to a separate stack prior to executing the sandboxed code and (2) restore these
registers after the sandboxed is executed. However, if it is running Wasm code, it could opt to use zero-cost
transitions [4] that rely on the compiler to ensure that the sandbox code cannot misuse the stack or scratch
registers.

Setting up an exit handler. If our runtime needs an exit handler either to handle hfi exit or redirected
system calls, it will need to setup an exit handler with hfi set exit handler. This exit handler is imple-
mented as a normal function call in the runtime that takes no arguments. It will query the hfi exit reason

CSR to find out why it was invoked.

Entering the sandbox. Having taken all these steps, our runtime is ready to start the sandbox. Once it
calls hfi enter, HFI mode is enabled, and the next instruction that runs will be inside a sandbox.

The exit handler (hfi exit and system calls). When the exit handler is called after the sandbox exits,
it will transfer control to the exit handler function in the runtime, which will check a control and status
register (CSR) to identify the cause of the exit, and respond appropriately.

For example, for sandbox exits, it will need to save context unless the sandbox execution has completed.
Similarly for system calls, it will need to save context, but then also execute whatever additional logic is
need to check the parameters of the system call for safety and finally invoking the system call [1].

7.2 OS (and VMM) integration

HFI is designed to require only minimal changes/support from the OS kernel. HFI requires support from
OS kernels in two areas:

Handling HFI faults A fault may occur in HFI mode for to two reasons: (1) normal processor traps such
as division by zero. (2) HFI policy violations. In both cases, when the processor traps into the kernel, HFI
enforcement is disabled so as not to disrupt kernel execution, and the trap is handled through all the normal
OS signal mechanisms (This is automatic as HFI hardware checks are only applied to userspace code). When
an instruction can traps due to some HFI policy violation, the normal trap mechanism for the current hart
is employed. HFI introduces a new trap code, hfi fault to support this.

When an HFI trap occurs, additional details about the cause are stored in the hfi fault status reg. A
kernel trap handler can immediately read and store this state into the process struct for the current process,
so it can be queried by a signal handler. The OS then invokes the standard signal handler registered by the
application for memory access violations. The OS must invoke the signal handler with HFI disabled; if the
signal handler returns control to the OS, the OS will re-enable HFI prior to resuming the faulting process.

Process scheduling. The kernel must save and restore HFI state (stored in internal registers) when
switching between processes/VMs etc. This can be performed using the HFI manipulation instructions
hfi reset regions, hfi set region permission, hfi set region size, hfi get region size, etc. To
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know whether HFI mode is currently enabled by the user space process, more privileged code can check the
state of the hfi usermode enabled status register.

8 Instruction Encoding

With the exception of h-prefixed instructions (which we discuss separately), most HFI instructions such as
transition instructions, region manipulation instructions have specific behavior and have little-to-no variation.
Thus, to minimize opcode usage, these instructions can share a single opcode and simply be distinguished
by the funct3 code. This optimization can be hidden from the end user by adding pseudo instructions to
assemblers. Additionally some of these instructions can be implemented as pseudo instructions that read
and writes to CSRs. To support backward compatible binaries, these instructions should be encoded using
instructions that don’t fault if not implemented.

H-prefixed instructions which are the HFI variants of memory instructions have very different char-
acteristics. H-prefixed instructions have to mimic native instructions, including variants of the memory
instructions (represented by funct3 codes); thus, these instructions need their own opcodes. Furthermore,
these instructions should be encoded using op codes that fail if unimplemented; this is because the h-prefixed
instructions implement new functionality—relative memory accesses—which makes them different from other
HFI instructions which implement restrictions.

As a result of encoding choices, binaries that use HFI’s implicit regions would remain backward compatible
on CPUs that don’t support HFI (albeit without the isolation enforcement). However by disease that use
HFI’s explicit region’s would not be supported in this context.

9 Pending Design Considerations

Here, we include topics that we believe merit further discussion but which we have not fully resolved for
inclusion in the specification.

9.1 Streamlining Control Transfers for Native Binaries

When sandboxing unmodified native binaries, we would ideally like control transfers into and out of the
sandbox library to require minimal overhead and complexity. With a few small changes, we could make this
simpler than what hfi enter and hfi exit offer today.

At present, control transfers require redirecting control flow through small stubs (trampolines) that need
to be mapped by the sandbox runtime into the sandboxed library address space, this adds complexity and
overhead.

For example, consider a case where a host application has uses a library sandboxed with HFI; the applica-
tions want to invoke a function foo() in the library To call foo(), it will need trampoline code—application
code that performs a context switch by saving the current registers, switching the stack register to point
to memory inside a region, enabling HFI and transferring control to foo(). This is mostly straightforward.
However, once foo finishes executing (foo executes a return instruction), execution would attempt to return
to the trampoline code—an operation that would fail as the trampoline code is not part of the sandbox
code. Thus the host application, must perform an intermediate step— it must call foo, while modifying the
return address on the stack to point to a stub within the sandbox, which invokes hfi exit and then returns
to the trampoline. We could eliminate the need for this stub by dedicating a bit in the return address (e.g.
it’s least significant bit, as this should be unused as instructions are at least 16 bit aligned) on the stack
that indicates that if HFI is enabled, this return should simply invoke hfi exit. Similar mechanism could
also be applied to eliminating the need for trampolines for direct and indirect calls (i.e. callbacks) to host
libraries.

9.2 HFI Versions (Profiles)

We aim to support multiple versions (profiles) for HFI to ensure we can support the myriad of RISC-V uses
cases from embedded devices to server class CPUs. The two versions we currently aim to support are a
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minimal profile aka version 0, and a standard profile aka version 1. The key difference between these two is
the number of supported regions. Versions may also be used to incorporate additional features in the future.
Software can check what version is supported as described in section 3.

The minimal profile described in this document supports: 1 implicit code region, 1 implicit data region
and 1 explicit data region. The additional standard profile supports: 2 implicit code regions, 4 implicit data
regions, and 4 explicit data regions. These regions are numbered as follows: explicit data region 1, implicit
data region 1 and implicit code region 1 are regions 1, 2, and 3 in both profiles. In the standard profile:
explicit data region 2, 3, and 4 are regions 4, 5, and 6 respectively; implicit data region 2, 3, and 4 are
regions 7, 8, and 9 respectively; implicit code region 2 is region 10. Additionally the permissions bit vector
operand specified in the hfi set region permission and hfi get region permission instructions is also
expanded to accommodate region permissions in the same order.

Design Rationale. Regions exact some cost in terms of circuit area, and differing trade-offs may make sense
for different use cases. Obviously more regions facilitate efficient access to more data and code concurrently,
and can simplify runtime implementation.

While the minimal profile is limited in the number of regions, this can still offer meaningful benefits
for certain use cases without significant concurrency or memory sharing. For example, the Google Chrome
browser’s Ubercage JIT isolation scheme [8] would be able to leverage this minimal profile for its isolation
requirements [6].

The standard profile offers an expanded the number of regions, the particular number of regions was
inspired by uses cases such as leveraging WebAssembly for efficient isolation of libraries from applications,
and efficient isolation of different clients’ code in serverless settings [5]. The main observation here is that
there is greater concurrency and sharing is present than simple use cases, but this can nevertheless be handled
efficiently with a handful of regions. For uses cases that need additional regions, this can be achieved by
spilling and restoring regions similar to how this is done with general-purpose registers.

Two additional instruction are required to support the standard profile with it’s multiple explicit regions.
hfi set curr explicit data region(region number t)

hfi get curr explicit data region() -> region number t

These instructions are used to set which explicit region the h-prefixed instructions will utilize.

9.3 HFI in M-mode or S-mode

We plan to add support for HFI in S-mode. Relatively small changes are necessary, however, we have not
yet done a full analysis of how privileged instructions are handled. HFI support in m-mode may similarly
be possible, but requires additional analysis for hardware implementation details.
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// Bit vector of sandbox configurations

hfi_options_t: reg_u8

lock_regions: reg_u1 // Restrict modifying of regions by sandboxed code.

redirect_system_calls: reg_u1 // Redirect syscall to the exit_handler.

redirect_exits: reg_u1 // Redirect hfi_exit to the exit_handler.

serialized_enter_exit: reg_u1 // Serialize enter/exit for Spectre protections.

// 1 -> explicit_data, 2 -> implicit_data, 3 -> implicit_code

region_number_t: reg_u32

// Bit vector of region permissions.

permission_t : reg_u8

r1_enabled : reg_u1, r1_read: reg_u1, r1_write: reg_u1, r1_is_large: reg_u1, // explicit data region 1

r2_enabled : reg_u1, r2_read: reg_u1, r2_write: reg_u1, // implicit data region 1

r3_enabled : reg_u1, r3_exec: reg_u1, // implicit code region 1

permission_set_t: reg_u32 // For future use. Fixed to 1.

// HFI mode transition instructions

hfi_enter(hfi_options_t) // Enter a sandbox with params.

hfi_enter(hfi_options_t, target: reg_u64) // Enter a sandbox with params.

hfi_exit() // Exit the sandbox.

hfi_set_exit_handler(exit_handler_t: reg_u64) // Set the exit handler.

hfi_get_exit_handler() -> exit_handler_t: reg_u64 // Get the exit handler.

// For explicit data regions set/get the {base_address, bound} acc. to the restrictions

// - base, bound are multiples of 64k for large regions

// - region shouldn't span a 4GiB boundary for small regions

// For implicit regions set/get a {base_prefix, lsb_mask}

hfi_set_region_size(region_number_t, reg_u64 base, reg_u64 mask_or_bound)

hfi_get_region_size(region_number_t) -> (reg_u64 base, reg_u64 mask_or_bound)

// Set/Get region permissions of all regions. permission_set_t is a register for future use, currently it must

be 0.↪→

hfi_set_region_permissions(permission_set_t, permission_t)

hfi_get_region_permission(permission_set_t) -> permission_t

// Set all regions' (size, bound, permissions) and the active explicit data region to 1.

hfi_reset_regions()

// Operations on the active explicit data region. Encoded like standard load, stores.

hlw(...) -> ..., hlh(...) -> ..., hlhu(...) -> ..., hlb(...) -> ..., hlbu(...) -> ..., hli(...) -> ...

hsw(...), hsh(...), hshu(...), hsb(...), hsbu(...), hsi(...)

Figure 1: The HFI interface. The functions represent HFI instructions, while the structures represent the
parameters passed in, or values returned by the HFI instructions via general purpose registers.
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hfi_status_t: reg_u64 // Configuration and status register for HFI. Read-only in userspace.

hfi_usermode_enabled: reg_u1 // Whether HFI mode is enabled. Set to 1 by hfi_enter, and 0 by hfi_exit.

hfi_exit_reason: reg_u2 // Reason for the last exit (1=> due to hfi_exit inst., 2=> due to system call).

hfi_exit_pc: reg_u60 // PC[62...2] of the last redirected syscall/hfi_exit. Other bits assumed 0.

implicit_code_region_t:

base_prefix: reg_u64 // base address prefix

lsb_mask: reg_u64 // mask for address suffix

permission_exec: reg_u1 // execute permission

implicit_data_region_t:

base_prefix: reg_u64 // base address prefix

lsb_mask: reg_u64 // mask for address suffix

permission_read: reg_u1 // read permission

permission_write: reg_u1 // write permission

explicit_data_region_t:

base_address: reg_u64

bound: reg_u64

permission_read: reg_u1 // read permission

permission_write: reg_u1 // write permission

is_large_region: reg_u1 // use large/small region. Large regions: base, bound are multiples of 64k. Small

regions: region shouldn't span a 4GiB boundary↪→

hfi_fault_t:

hfi_fault_occured: reg_u1 // true (1) | false (0)

hfi_fault_region: reg_u8 // implicit region not matched => 0, explicit region fault => region number

hfi_fault_op: reg_u2 // LOAD_FAULT| STORE_FAULT| FETCH_FAULT

hfi_fault_type: reg_u1 // OUT_OF_BOUNDS | INSUFFICIENT_PERMISSIONS

// Read-only Control and Status Registers.

hfi_status_reg : hfi_status_t // Bit vector of HFI run status

// Read-write HFI fault register

hfi_fault_status_reg : hfi_fault_t

//Internal registers

hfi_exit_handler_reg : reg_u64 // Bit vector of HFI run status

hfi_implicit_code_region : implicit_code_region_t[1]

hfi_implicit_data_region : implicit_data_region_t[1]

hfi_explicit_data_region : explicit_data_region_t[1]

Figure 2: An HFI implementation’s control and status registers. The types show the sizes of registers, while
the variables show the number of registers needed.
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